• J Psychiatr Res · Dec 2016

    Problematic internet use (PIU): Associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry.

    • Konstantinos Ioannidis, Samuel R Chamberlain, Matthias S Treder, Franz Kiraly, Eric W Leppink, Sarah A Redden, Dan J Stein, Christine Lochner, and Jon E Grant.
    • Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
    • J Psychiatr Res. 2016 Dec 1; 83: 94-102.

    AbstractProblematic internet use is common, functionally impairing, and in need of further study. Its relationship with obsessive-compulsive and impulsive disorders is unclear. Our objective was to evaluate whether problematic internet use can be predicted from recognised forms of impulsive and compulsive traits and symptomatology. We recruited volunteers aged 18 and older using media advertisements at two sites (Chicago USA, and Stellenbosch, South Africa) to complete an extensive online survey. State-of-the-art out-of-sample evaluation of machine learning predictive models was used, which included Logistic Regression, Random Forests and Naïve Bayes. Problematic internet use was identified using the Internet Addiction Test (IAT). 2006 complete cases were analysed, of whom 181 (9.0%) had moderate/severe problematic internet use. Using Logistic Regression and Naïve Bayes we produced a classification prediction with a receiver operating characteristic area under the curve (ROC-AUC) of 0.83 (SD 0.03) whereas using a Random Forests algorithm the prediction ROC-AUC was 0.84 (SD 0.03) [all three models superior to baseline models p < 0.0001]. The models showed robust transfer between the study sites in all validation sets [p < 0.0001]. Prediction of problematic internet use was possible using specific measures of impulsivity and compulsivity in a population of volunteers. Moreover, this study offers proof-of-concept in support of using machine learning in psychiatry to demonstrate replicability of results across geographically and culturally distinct settings.Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.