• Medicina · Oct 2020

    Randomized Controlled Trial

    Chemically Activated Cooling Vest's Effect on Cooling Rate Following Exercise-Induced Hyperthermia: A Randomized Counter-Balanced Crossover Study.

    • Yuri Hosokawa, Luke N Belval, William M Adams, Lesley W Vandermark, and Douglas J Casa.
    • Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
    • Medicina (Kaunas). 2020 Oct 14; 56 (10).

    AbstractBackground and objectives: Exertional heat stroke (EHS) is a potentially lethal, hyperthermic condition that warrants immediate cooling to optimize the patient outcome. The study aimed to examine if a portable cooling vest meets the established cooling criteria (0.15 °C·min-1 or greater) for EHS treatment. It was hypothesized that a cooling vest will not meet the established cooling criteria for EHS treatment. Materials and Methods: Fourteen recreationally active participants (mean ± SD; male, n = 8; age, 25 ± 4 years; body mass, 86.7 ± 10.5 kg; body fat, 16.5 ± 5.2%; body surface area, 2.06 ± 0.15 m2. female, n = 6; 22 ± 2 years; 61.3 ± 6.7 kg; 22.8 ± 4.4%; 1.66 ± 0.11 m2) exercised on a motorized treadmill in a hot climatic chamber (ambient temperature 39.8 ± 1.9 °C, relative humidity 37.4 ± 6.9%) until they reached rectal temperature (TRE) >39 °C (mean TRE, 39.59 ± 0.38 °C). Following exercise, participants were cooled using either a cooling vest (VEST) or passive rest (PASS) in the climatic chamber until TRE reached 38.25 °C. Trials were assigned using randomized, counter-balanced crossover design. Results: There was a main effect of cooling modality type on cooling rates (F[1, 24] = 10.46, p < 0.01, η2p = 0.30), with a greater cooling rate observed in VEST (0.06 ± 0.02 °C·min-1) than PASS (0.04 ± 0.01 °C·min-1) (MD = 0.02, 95% CI = [0.01, 0.03]). There were also main effects of sex (F[1, 24] = 5.97, p = 0.02, η2p = 0.20) and cooling modality type (F[1, 24] = 4.38, p = 0.047, η2p = 0.15) on cooling duration, with a faster cooling time in female (26.9 min) than male participants (42.2 min) (MD = 15.3 min, 95% CI = [2.4, 28.2]) and faster cooling duration in VEST than PASS (MD = 13.1 min, 95% CI = [0.2, 26.0]). An increased body mass was associated with a decreased cooling rate in PASS (r = -0.580, p = 0.03); however, this association was not significant in vest (r = -0.252, p = 0.39). Conclusions: Although VEST exhibited a greater cooling capacity than PASS, VEST was far below an acceptable cooling rate for EHS treatment. VEST should not replace immediate whole-body cold-water immersion when EHS is suspected.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…