• Scientific reports · May 2017

    Target decoupling in coupled systems resistant to random perturbation.

    • Sunkyu Yu, Xianji Piao, and Namkyoo Park.
    • Photonic Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea.
    • Sci Rep. 2017 May 19; 7 (1): 2139.

    AbstractTo suppress unwanted crosstalks between nearby optical elements, the decoupling technique for integrated systems has been desired for the target control of light flows. Although cloaking methods have enabled complete decoupling of optical elements by manipulating electromagnetic waves microscopically, it is difficult to be applied rigorously to control each unit element in coupled systems due to severe restrictions on material parameters for cloaking. Here we develop the macroscopic approach to design crosstalk-free regions in coupled optical systems. By inversely designing the eigenstate which encompasses target elements, the stable decoupling of the elements from the coupled system is achieved, being completely independent from the random alteration of the decoupled region, and at the same time, allowing coherent and scattering-free wave transport with desired spatial profiles. We also demonstrate the decoupling in disordered systems, overcoming the transport blockade from Anderson localization. Our results provide an attractive solution for "target hiding" of elements inside coupled systems.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.