• Neurobiology of disease · Nov 2018

    A differentiating neural stem cell-derived astrocytic population mitigates the inflammatory effects of TNF-α and IL-6 in an iPSC-based blood-brain barrier model.

    • Jennifer L Mantle and Kelvin H Lee.
    • Department of Chemical and Biomolecular Engineering, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States.
    • Neurobiol. Dis. 2018 Nov 1; 119: 113-120.

    AbstractInflammation can be a risk factor for neurodegenerative diseases such as Alzheimer's disease (AD) and may also contribute to the progression of AD. Here, we sought to understand how inflammation affects the properties of the brain microvascular endothelial cells (BMECs) that compose the blood-brain barrier (BBB), which is impaired in AD. A fully human in vitro BBB model with brain microvascular endothelial cells derived from induced pluripotent stem cells and differentiating neural stem cell (NSC)-derived astrocytic cells was used to investigate the effects of neuroinflammation on barrier function. The cytokines TNF-α and IL-6 directly cause BBB dysfunction measured by a decrease in transendothelial electrical resistance, an increase in sodium fluorescein permeability, and a decrease in cell polarity, providing a link between neuroinflammation and specific aspects of BBB breakdown. An NSC-derived astrocytic cell population was added to the model and secreted cytokines and chemokines were quantified in monoculture and coculture both in the presence and absence of TNF-α and IL-6. Increased concentrations of pro-inflammatory cytokines known to be secreted by astrocytes or endothelial cells such as MCP-1, IL-8, IP-10, MIP-1β, IL-1 β, MIG, and RANTES peaked in inflammatory conditions when NSC-astrocytic cells were present. Despite the presence of several pro-inflammatory cytokines, the NSC-derived astrocytic cells mitigated the effects of inflammation measured by a restoration of transendothelial electrical resistance and IgG permeability. These results also suggest a breakdown in transcellular transport that precedes any increase in paracellular permeability in neuroinflammation. This model has the potential to resolve questions about neurodegenerative disease progression and delivery of therapeutics to the brain.Copyright © 2018 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…