-
- Antje Wulff, Sara Montag, Michael Marschollek, and Thomas Jack.
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany.
- Methods Inf Med. 2019 Dec 1; 58 (S 02): e43-e57.
BackgroundThe design of computerized systems able to support automated detection of threatening conditions in critically ill patients such as systemic inflammatory response syndrome (SIRS) and sepsis has been fostered recently. The increase of research work in this area is due to both the growing digitalization in health care and the increased appreciation of the importance of early sepsis detection and intervention. To be able to understand the variety of systems and their characteristics as well as performances, a systematic literature review is required. Existing reviews on this topic follow a rather restrictive searching methodology or they are outdated. As much progress has been made during the last 5 years, an updated review is needed to be able to keep track of current developments in this area of research.ObjectivesTo provide an overview about current approaches for the design of clinical decision-support systems (CDSS) in the context of SIRS, sepsis, and septic shock, and to categorize and compare existing approaches.MethodsA systematic literature review was performed in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. Searches for eligible articles were conducted on five electronic bibliographic databases, including PubMed/MEDLINE, IEEE Xplore, Embase, Scopus, and ScienceDirect. Initial results were screened independently by two reviewers based on clearly defined eligibility criteria. A backward as well as an updated search enriched the initial results. Data were extracted from included articles and presented in a standardized way. Articles were classified into predefined categories according to characteristics extracted previously. The classification was performed according to the following categories: clinical setting including patient population and mono- or multicentric study, support type of the system such as prediction or detection, systems characteristics such as knowledge- or data-driven algorithms used, evaluation of methodology, and results including ground truth definition, sensitivity, and specificity. All results were assessed qualitatively by two reviewers.ResultsThe search resulted in 2,373 articles out of which 55 results were identified as eligible. Over 80% of the articles describe monocentric studies. More than 50% include adult patients, and only four articles explicitly report the inclusion of pediatric patients. Patient recruitment often is very selective, which can be observed from highly varying inclusion and exclusion criteria. The task of disease detection is covered in 62% of the articles; prediction of upcoming conditions in 33%. Sepsis is covered in 67% of the articles, SIRS as sole entity in only 4%, whereas 27% focus on severe sepsis and/or septic shock. The most common combinations of categories "algorithm used" and "support type" are knowledge-based detection of sepsis and data-driven prediction of sepsis. In evaluations, manual chart review (38%) and diagnosis coding (29%) represent the most frequently used ground truth definitions; most studies present a sample size between 10,001 and 100,000 cases (31%) and performances highly differ with only five articles presenting sensitivities and specificities above 90%; four of them using knowledge-based rather than machine learning algorithms. The presentations of holistic CDSS approaches, including technical implementation details, system interfaces, and data and interoperability aspects enabling the use of CDSS in routine settings are missing in nearly all articles.ConclusionsThe review demonstrated the high variety of research in this context successfully. A clear trend is observable toward the use of data-driven algorithms, and a lack of research could be identified in covering the pediatric population as well as acknowledging SIRS as an independent and threatening condition. The quality as well as the significance of the presented evaluations for assessing the performances of the algorithms in clinical routine settings are often not meeting the current standard of scientific work. Our future interest will be concentrated on these realistic settings by implementing and evaluating SIRS detection approaches as well as considering factors to make the CDSS useable in clinical routine from both technical and medical perspectives.Georg Thieme Verlag KG Stuttgart · New York.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.