• Exp Brain Res · Jan 1993

    Comparative Study

    Gait-related motor patterns and hindlimb kinetics for the cat trot and gallop.

    • J L Smith, S H Chung, and R F Zernicke.
    • Department of Physiological Science, University of California, Los Angeles 90024-1568.
    • Exp Brain Res. 1993 Jan 1; 94 (2): 308-22.

    AbstractTo assess speed- and gait-related changes in semitendinosus (ST) activity, EMG was recorded from three cats during treadmill locomotion. Selected step cycles were filmed, and hip and knee joint kinematics were synchronized with EMG records. Swing-phase kinetics for trot and gallop steps at 2.25 m/s were compared for gait-related differences. Also, swing kinetics for different gallop forms were compared. With few exceptions, ST-EMG was characterized by two bursts for each step cycle; the first preceded paw off (STpo), and the second preceded paw contact (STpc). The two-burst pattern for the walk was defined by a high-amplitude STpo burst and a brief, low-amplitude STpc burst; at the slowest walk speeds, the STpc burst was occasionally absent. For the trot, the STpo burst was biphasic, with a brief pause just after paw off. With increasing walk-trot speeds, the duration of both bursts (STpo, STpc) remained relatively constant, but recruitment increased. Also, the onset latency of the STpo burst shifted, and a greater proportion of the burst was coincident with knee flexion during early swing. At the trot-gallop transition, there was an abrupt change in the two-burst pattern, and galloping was characterized by a high-amplitude STpc burst and a brief, low-amplitude STpo burst. At the fastest gallop speeds, the STpo burst was often absent, and the reduction in or elimination of the burst was associated with a unique pattern of swing phase kinetics at the knee. Knee flexion during the gallop swing was sustained by two inertial torques related to hip linear acceleration (HLA) and leg angular acceleration (LAA); correspondingly, muscle contraction was unnecessary. Conversely, knee flexion at the onset of the trot swing relied on a flexor muscle torque at the knee acting with an inertial flexor torque (LAA). Rotatory and transverse gallops at 4.0 m/s had similar swing phase kinetics and ST-EMG. Gait-related changes in ST-EMG, particularly at the trot-gallop transition, are not congruent with neural models assuming that details of the ST motor pattern are produced by a spinal CPG. We suggest that motor patterns programmed by the spinal CPG are modulated by input from supraspinal centers and/or motion-related feedback from the hindlimbs to provide appropriate gait-specific activation of the ST.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…