• Cell transplantation · Jan 2015

    Improvement in Spinal Cord Injury-Induced Bladder Fibrosis Using Mesenchymal Stem Cell Transplantation Into the Bladder Wall.

    • Hong Jun Lee, Jin An, Seung Whan Doo, Jae Heon Kim, Sung Sik Choi, Sang-Rae Lee, Seung Won Park, Yun Seob Song, and Seung U Kim.
    • Biomedical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea.
    • Cell Transplant. 2015 Jan 1; 24 (7): 1253-63.

    AbstractExperiments on spinal cord injury (SCI) have largely focused on the transplantation of stem cells into injured spinal cords for motor recovery while neglecting to investigate bladder dysfunction. The present study was performed to investigate the effect of B10 human mesenchymal stem cells (hMSCs) directly transplanted into the bladder wall of SCI rats and to determine whether they are capable of inhibiting collagen deposition and improving cystometric parameters in SCI rats. Forty 6-week-old female Sprague-Dawley rats were divided into four groups (group 1: control, group 2: sham operated, group 3: SCI, group 4: SCI rats that received B10 cells). B10 cells were labeled with fluorescent magnetic nanoparticles (MNPs). Four weeks after the onset of SCI, MNP-labeled B10 cells were injected to the bladder wall. Serial magnetic resonance (MR) images were taken immediately after MNP-B10 injection and at 4 weeks posttransplantation. Voiding function was assessed at 4 weeks posttransplantation, and the bladder was harvested. Improvements in bladder fibrosis and bladder function were monitored by molecular MR imaging. Transplantation of B10 cells into the SCI rats markedly reduced their weights and collagen deposition. MR images showed a clear hypointense signal induced by the MNP-labeled B10 cells at 4 weeks posttransplantation. Transplanted B10 cells were found to differentiate into smooth muscle cells. The intercontraction interval decreased, and the maximal voiding pressure increased after SCI but recovered after B10 cell transplantation. Survival of B10 cells was found at 4 weeks posttransplantation using anti-human mitochondria antibody staining and MR imaging. The transplanted B10 cells inhibited bladder fibrosis and ameliorated bladder dysfunction in the rat SCI model. MSC-based cell transplantation may be a novel therapeutic strategy for bladder dysfunction in patients with SCI.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…