• J Clin Sleep Med · Jul 2015

    Comparative Study

    Is There a Clinical Role For Smartphone Sleep Apps? Comparison of Sleep Cycle Detection by a Smartphone Application to Polysomnography.

    • Sushanth Bhat, Ambra Ferraris, Divya Gupta, Mona Mozafarian, Vincent A DeBari, Neola Gushway-Henry, Satish P Gowda, Peter G Polos, Mitchell Rubinstein, Huzaifa Seidu, and Sudhansu Chokroverty.
    • JFK Neuroscience Institute/Seton Hall University, Edison NJ.
    • J Clin Sleep Med. 2015 Jul 15; 11 (7): 709-15.

    Study ObjectivesSeveral inexpensive, readily available smartphone apps that claim to monitor sleep are popular among patients. However, their accuracy is unknown, which limits their widespread clinical use. We therefore conducted this study to evaluate the validity of parameters reported by one such app, the Sleep Time app (Azumio, Inc., Palo Alto, CA, USA) for iPhones.MethodsTwenty volunteers with no previously diagnosed sleep disorders underwent in-laboratory polysomnography (PSG) while simultaneously using the app. Parameters reported by the app were then compared to those obtained by PSG. In addition, an epoch-by-epoch analysis was performed by dividing the PSG and app graph into 15-min epochs.ResultsThere was no correlation between PSG and app sleep efficiency (r = -0.127, p = 0.592), light sleep percentage (r = 0.024, p = 0.921), deep sleep percentage (r = 0.181, p = 0.444) or sleep latency (rs = 0.384, p = 0.094). The app slightly and nonsignificantly overestimated sleep efficiency by 0.12% (95% confidence interval [CI] -4.9 to 5.1%, p = 0.962), significantly underestimated light sleep by 27.9% (95% CI 19.4-36.4%, p < 0.0001), significantly overestimated deep sleep by 11.1% (CI 4.7-17.4%, p = 0.008) and significantly overestimated sleep latency by 15.6 min (CI 9.7-21.6, p < 0.0001). Epochwise comparison showed low overall accuracy (45.9%) due to poor interstage discrimination, but high accuracy in sleep-wake detection (85.9%). The app had high sensitivity but poor specificity in detecting sleep (89.9% and 50%, respectively).ConclusionsOur study shows that the absolute parameters and sleep staging reported by the Sleep Time app (Azumio, Inc.) for iPhones correlate poorly with PSG. Further studies comparing app sleep-wake detection to actigraphy may help elucidate its potential clinical utility.CommentaryA commentary on this article appears in this issue on page 695.© 2015 American Academy of Sleep Medicine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…