• Cochrane Db Syst Rev · Oct 2019

    Review

    Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in people living with HIV.

    • Stephanie Bjerrum, Ian Schiller, Nandini Dendukuri, Mikashmi Kohli, Ruvandhi R Nathavitharana, Alice A Zwerling, Claudia M Denkinger, Karen R Steingart, and Maunank Shah.
    • Department of Clinical Research, Research Unit of Infectious Diseases, University of Southern Denmark, Odense, Denmark.
    • Cochrane Db Syst Rev. 2019 Oct 21; 10 (10): CD011420CD011420.

    BackgroundThe lateral flow urine lipoarabinomannan (LF-LAM) assay Alere Determine™ TB LAM Ag is recommended by the World Health Organization (WHO) to help detect active tuberculosis in HIV-positive people with severe HIV disease. This review update asks the question, "does new evidence justify the use of LF-LAM in a broader group of people?", and is part of the WHO process for updating guidance on the use of LF-LAM.ObjectivesTo assess the accuracy of LF-LAM for the diagnosis of active tuberculosis among HIV-positive adults with signs and symptoms of tuberculosis (symptomatic participants) and among HIV-positive adults irrespective of signs and symptoms of tuberculosis (unselected participants not assessed for tuberculosis signs and symptoms).The proposed role for LF-LAM is as an add on to clinical judgement and with other tests to assist in diagnosing tuberculosis.Search MethodsWe searched the Cochrane Infectious Diseases Group Specialized Register; MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature, Scopus, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number Registry, and ProQuest, without language restriction to 11 May 2018.Selection CriteriaRandomized trials, cross-sectional, and observational cohort studies that evaluated LF-LAM for active tuberculosis (pulmonary and extrapulmonary) in HIV-positive adults. We included studies that used the manufacturer's recommended threshold for test positivity, either the updated reference card with four bands (grade 1 of 4) or the corresponding prior reference card grade with five bands (grade 2 of 5). The reference standard was culture or nucleic acid amplification test from any body site (microbiological). We considered a higher quality reference standard to be one in which two or more specimen types were evaluated for tuberculosis diagnosis and a lower quality reference standard to be one in which only one specimen type was evaluated.Data Collection And AnalysisTwo review authors independently extracted data using a standardized form and REDCap electronic data capture tools. We appraised the quality of studies using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and performed meta-analyses to estimate pooled sensitivity and specificity using a bivariate random-effects model and a Bayesian approach. We analyzed studies enrolling strictly symptomatic participants separately from those enrolling unselected participants. We investigated pre-defined sources of heterogeneity including the influence of CD4 count and clinical setting on the accuracy estimates. We assessed the certainty of the evidence using the GRADE approach.Main ResultsWe included 15 unique studies (nine new studies and six studies from the original review that met the inclusion criteria): eight studies among symptomatic adults and seven studies among unselected adults. All studies were conducted in low- or middle-income countries. Risk of bias was high in the patient selection and reference standard domains, mainly because studies excluded participants unable to produce sputum and used a lower quality reference standard.Participants with tuberculosis symptomsLF-LAM pooled sensitivity (95% credible interval (CrI) ) was 42% (31% to 55%) (moderate-certainty evidence) and pooled specificity was 91% (85% to 95%) (very low-certainty evidence), (8 studies, 3449 participants, 37% with tuberculosis).For a population of 1000 people where 300 have microbiologically-confirmed tuberculosis, the utilization of LF-LAM would result in: 189 to be LF-LAM positive: of these, 63 (33%) would not have tuberculosis (false-positives); and 811 to be LF-LAM negative: of these, 174 (21%) would have tuberculosis (false-negatives).By clinical setting, pooled sensitivity was 52% (40% to 64%) among inpatients versus 29% (17% to 47%) among outpatients; and pooled specificity was 87% (78% to 93%) among inpatients versus 96% (91% to 99%) among outpatients. Stratified by CD4 cell count, pooled sensitivity increased, and specificity decreased with lower CD4 cell count.Unselected participants not assessed for signs and symptoms of tuberculosisLF-LAM pooled sensitivity was 35% (22% to 50%), (moderate-certainty evidence) and pooled specificity was 95% (89% to 96%), (low-certainty evidence), (7 studies, 3365 participants, 13% with tuberculosis).For a population of 1000 people where 100 have microbiologically-confirmed tuberculosis, the utilization of LF-LAM would result in: 80 to be LF-LAM positive: of these, 45 (56%) would not have tuberculosis (false-positives); and 920 to be LF-LAM negative: of these, 65 (7%) would have tuberculosis (false-negatives).By clinical setting, pooled sensitivity was 62% (41% to 83%) among inpatients versus 31% (18% to 47%) among outpatients; pooled specificity was 84% (48% to 96%) among inpatients versus 95% (87% to 99%) among outpatients. Stratified by CD4 cell count, pooled sensitivity increased, and specificity decreased with lower CD4 cell count.Authors' ConclusionsWe found that LF-LAM has a sensitivity of 42% to diagnose tuberculosis in HIV-positive individuals with tuberculosis symptoms and 35% in HIV-positive individuals not assessed for tuberculosis symptoms, consistent with findings reported previously. Regardless of how people are enrolled, sensitivity is higher in inpatients and those with lower CD4 cell, but a concomitant lower specificity. As a simple point-of-care test that does not depend upon sputum evaluation, LF-LAM may assist with the diagnosis of tuberculosis, particularly when a sputum specimen cannot be produced.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.