• Surgical oncology · Dec 2018

    Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning.

    • Parita Sanghani, Beng Ti Ang, King Nicolas Kon Kam NKK National Neuroscience Institute, Singapore., and Hongliang Ren.
    • National University of Singapore, Singapore.
    • Surg Oncol. 2018 Dec 1; 27 (4): 709-714.

    AbstractGlioblastoma multiforme (GBM) are aggressive brain tumors, which lead to poor overall survival (OS) of patients. OS prediction of GBM patients provides useful information for surgical and treatment planning. Radiomics research attempts at predicting disease prognosis, thus providing beneficial information for personalized treatment from a variety of imaging features extracted from multiple MR images. In this study, MR image derived texture features, tumor shape and volumetric features, and patient age were obtained for 163 patients. OS group prediction was performed for both 2-class (short and long) and 3-class (short, medium and long) survival groups. Support vector machine classification based recursive feature elimination method was used to perform feature selection. The performance of the classification model was assessed using 5-fold cross-validation. The 2-class and 3-class OS group prediction accuracy obtained were 98.7% and 88.95% respectively. The shape features used in this work have been evaluated for OS prediction of GBM patients for the first time. The feature selection and prediction scheme implemented in this study yielded high accuracy for both 2-class and 3-class OS group predictions. This study was performed using routinely acquired MR images for GBM patients, thus making the translation of this work into a clinical setup convenient.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.