• Cochrane Db Syst Rev · Dec 2018

    Meta Analysis

    Dual combination therapy versus long-acting bronchodilators alone for chronic obstructive pulmonary disease (COPD): a systematic review and network meta-analysis.

    • Yuji Oba, Edna Keeney, Namratta Ghatehorde, and Sofia Dias.
    • Division of Pulmonary and Critical Care Medicine, University of Missouri, Columbia, MO, USA.
    • Cochrane Db Syst Rev. 2018 Dec 3; 12 (12): CD012620CD012620.

    BackgroundLong-acting bronchodilators such as long-acting β-agonist (LABA), long-acting muscarinic antagonist (LAMA), and LABA/inhaled corticosteroid (ICS) combinations have been used in people with moderate to severe chronic obstructive pulmonary disease (COPD) to control symptoms such as dyspnoea and cough, and prevent exacerbations. A number of LABA/LAMA combinations are now available for clinical use in COPD. However, it is not clear which group of above mentioned inhalers is most effective or if any specific formulation works better than the others within the same group or class.ObjectivesTo compare the efficacy and safety of available formulations from four different groups of inhalers (i.e. LABA/LAMA combination, LABA/ICS combination, LAMA and LABA) in people with moderate to severe COPD. The review will update previous systematic reviews on dual combination inhalers and long-acting bronchodilators to answer the questions described above using the strength of a network meta-analysis (NMA).Search MethodsWe identified studies from the Cochrane Airways Specialised Register, which contains several databases. We also conducted a search of ClinicalTrials.gov and manufacturers' websites. The most recent searches were conducted on 6 April 2018.Selection CriteriaWe included randomised controlled trials (RCTs) that recruited people aged 35 years or older with a diagnosis of COPD and a baseline forced expiratory volume in one second (FEV1) of less than 80% of predicted. We included studies of at least 12 weeks' duration including at least two active comparators from one of the four inhaler groups.Data Collection And AnalysisWe conducted NMAs using a Bayesian Markov chain Monte Carlo method. We considered a study as high risk if recruited participants had at least one COPD exacerbation within the 12 months before study entry and as low risk otherwise. Primary outcomes were COPD exacerbations (moderate to severe and severe), and secondary outcomes included symptom and quality-of-life scores, safety outcomes, and lung function. We collected data only for active comparators and did not consider placebo was not considered. We assumed a class/group effect when a fixed-class model fitted well. Otherwise we used a random-class model to assess intraclass/group differences. We supplemented the NMAs with pairwise meta-analyses.Main ResultsWe included a total of 101,311 participants from 99 studies (26 studies with 32,265 participants in the high-risk population and 73 studies with 69,046 participants in the low-risk population) in our systematic review. The median duration of studies was 52 weeks in the high-risk population and 26 weeks in the low-risk population (range 12 to 156 for both populations). We considered the quality of included studies generally to be good.The NMAs suggested that the LABA/LAMA combination was the highest ranked treatment group to reduce COPD exacerbations followed by LAMA in the both populations.There is evidence that the LABA/LAMA combination decreases moderate to severe exacerbations compared to LABA/ICS combination, LAMA, and LABA in the high-risk population (network hazard ratios (HRs) 0.86 (95% credible interval (CrI) 0.76 to 0.99), 0.87 (95% CrI 0.78 to 0.99), and 0.70 (95% CrI 0.61 to 0.8) respectively), and that LAMA decreases moderate to severe exacerbations compared to LABA in the high- and low-risk populations (network HR 0.80 (95% CrI 0.71 to 0.88) and 0.87 (95% CrI 0.78 to 0.97), respectively). There is evidence that the LABA/LAMA combination reduces severe exacerbations compared to LABA/ICS combination and LABA in the high-risk population (network HR 0.78 (95% CrI 0.64 to 0.93) and 0.64 (95% CrI 0.51 to 0.81), respectively).There was a general trend towards a greater improvement in symptom and quality-of-life scores with the combination therapies compared to monotherapies, and the combination therapies were generally ranked higher than monotherapies.The LABA/ICS combination was the lowest ranked in pneumonia serious adverse events (SAEs) in both populations. There is evidence that the LABA/ICS combination increases the odds of pneumonia compared to LAMA/LABA combination, LAMA and LABA (network ORs: 1.69 (95% CrI 1.20 to 2.44), 1.78 (95% CrI 1.33 to 2.39), and 1.50 (95% CrI 1.17 to 1.92) in the high-risk population and network or pairwise OR: 2.33 (95% CI 1.03 to 5.26), 2.02 (95% CrI 1.16 to 3.72), and 1.93 (95% CrI 1.29 to 3.22) in the low-risk population respectively). There were significant overlaps in the rank statistics in the other safety outcomes including mortality, total, COPD, and cardiac SAEs, and dropouts due to adverse events.None of the differences in lung function met a minimal clinically important difference criterion except for LABA/LAMA combination versus LABA in the high-risk population (network mean difference 0.13 L (95% CrI 0.10 to 0.15). The results of pairwise meta-analyses generally agreed with those of the NMAs. There is no evidence to suggest intraclass/group differences except for lung function at 12 months in the high-risk population.Authors' ConclusionsThe LABA/LAMA combination was the highest ranked treatment group to reduce COPD exacerbations although there was some uncertainty in the results. LAMA containing inhalers may have an advantage over those without a LAMA for preventing COPD exacerbations based on the rank statistics. Combination therapies appear more effective than monotherapies for improving symptom and quality-of-life scores. ICS-containing inhalers are associated with an increased risk of pneumonia.Our most comprehensive review including intraclass/group comparisons, free combination therapies, 99 studies, and 20 outcomes for each high- and low-risk population summarises the current literature and could help with updating existing COPD guidelines.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…