-
Cochrane Db Syst Rev · Aug 2017
Review Meta AnalysisDeferasirox for managing iron overload in people with thalassaemia.
- Claudia Bollig, Lisa K Schell, Gerta Rücker, Roman Allert, Edith Motschall, Charlotte M Niemeyer, Dirk Bassler, and Joerg J Meerpohl.
- Cochrane Germany, Medical Center - Univ. of Freiburg, Faculty of Medicine, Univ. of Freiburg, Breisacher Straße 153, Freiburg, Germany, 79110.
- Cochrane Db Syst Rev. 2017 Aug 15; 8 (8): CD007476CD007476.
BackgroundThalassaemia is a hereditary anaemia due to ineffective erythropoiesis. In particular, people with thalassaemia major develop secondary iron overload resulting from regular red blood cell transfusions. Iron chelation therapy is needed to prevent long-term complications.Both deferoxamine and deferiprone are effective; however, a review of the effectiveness and safety of the newer oral chelator deferasirox in people with thalassaemia is needed.ObjectivesTo assess the effectiveness and safety of oral deferasirox in people with thalassaemia and iron overload.Search MethodsWe searched the Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 12 August 2016.We also searched MEDLINE, Embase, the Cochrane Library, Biosis Previews, Web of Science Core Collection and three trial registries: ClinicalTrials.gov; the WHO International Clinical Trials Registry Platform; and the Internet Portal of the German Clinical Trials Register: 06 and 07 August 2015.Selection CriteriaRandomised controlled studies comparing deferasirox with no therapy or placebo or with another iron-chelating treatment.Data Collection And AnalysisTwo authors independently assessed risk of bias and extracted data. We contacted study authors for additional information.Main ResultsSixteen studies involving 1807 randomised participants (range 23 to 586 participants) were included. Twelve two-arm studies compared deferasirox to placebo (two studies) or deferoxamine (seven studies) or deferiprone (one study) or the combination of deferasirox and deferoxamine to deferoxamine alone (one study). One study compared the combination of deferasirox and deferiprone to deferiprone in combination with deferoxamine. Three three-arm studies compared deferasirox to deferoxamine and deferiprone (two studies) or the combination of deferasirox and deferiprone to deferiprone and deferasirox monotherapy respectively (one study). One four-arm study compared two different doses of deferasirox to matching placebo groups.The two studies (a pharmacokinetic and a dose-escalation study) comparing deferasirox to placebo (n = 47) in people with transfusion-dependent thalassaemia showed that deferasirox leads to net iron excretion. In these studies, safety was acceptable and further investigation in phase II and phase III studies was warranted.Nine studies (1251 participants) provided data for deferasirox versus standard treatment with deferoxamine. Data suggest that a similar efficacy can be achieved depending on the ratio of doses of deferoxamine and deferasirox being compared. In the phase III study, similar or superior efficacy for the intermediate markers ferritin and liver iron concentration (LIC) could only be achieved in the highly iron-overloaded subgroup at a mean ratio of 1 mg of deferasirox to 1.8 mg of deferoxamine corresponding to a mean dose of 28.2 mg per day and 51.6 mg per day respectively. The pooled effects across the different dosing ratios are: serum ferritin, mean difference (MD) 454.42 ng/mL (95% confidence interval (CI) 337.13 to 571.71) (moderate quality evidence); LIC evaluated by biopsy or SQUID, MD 2.37 mg Fe/g dry weight (95% CI 1.68 to 3.07) (moderate quality evidence) and responder analysis, LIC 1 to < 7 mg Fe/g dry weight, risk ratio (RR) 0.80 (95% CI 0.69 to 0.92) (moderate quality evidence). The substantial heterogeneity observed could be explained by the different dosing ratios. Data on mortality (low quality evidence) and on safety at the presumably required doses for effective chelation therapy are limited. Patient satisfaction was better with deferasirox among those who had previously received deferoxamine treatment, RR 2.20 (95% CI 1.89 to 2.57) (moderate quality evidence). The rate of discontinuations was similar for both drugs (low quality evidence).For the remaining comparisons in people with transfusion-dependent thalassaemia, the quality of the evidence for outcomes assessed was low to very low, mainly due to the very small number of participants included. Four studies (205 participants) compared deferasirox to deferiprone; one of which (41 participants) revealed a higher number of participants experiencing arthralgia in the deferiprone group, but due to the large number of different types of adverse events reported and compared this result is uncertain. One study (96 participants) compared deferasirox combined with deferiprone to deferiprone with deferoxamine. Participants treated with the combination of the oral iron chelators had a higher adherence compared to those treated with deferiprone and deferoxamine, but no participants discontinued the study. In the comparisons of deferasirox versus combined deferasirox and deferiprone and that of deferiprone versus combined deferasirox and deferiprone (one study, 40 participants), and deferasirox and deferoxamine versus deferoxamine alone (one study, 94 participants), only a few patient-relevant outcomes were reported and no significant differences were observed.One study (166 participants) included people with non-transfusion dependent thalassaemia and compared two different doses of deferasirox to placebo. Deferasirox treatment reduced serum ferritin, MD -306.74 ng/mL (95% CI -398.23 to -215.24) (moderate quality evidence) and LIC, MD -3.27 mg Fe/g dry weight (95% CI -4.44 to -2.09) (moderate quality evidence), while the number of participants experiencing adverse events and rate of discontinuations (low quality evidence) was similar in both groups. No participant died, but data on mortality were limited due to a follow-up period of only one year (moderate quality evidence). Deferasirox offers an important treatment option for people with thalassaemia and secondary iron overload. Based on the available data, deferasirox does not seem to be superior to deferoxamine at the usually recommended ratio of 1 mg of deferasirox to 2 mg of deferoxamine. However, similar efficacy seems to be achievable depending on the dose and ratio of deferasirox compared to deferoxamine. Whether this will result in similar efficacy and will translate to similar benefits in the long term, as has been shown for deferoxamine, needs to be confirmed. Data from randomised controlled trials on rare toxicities and long-term safety are still limited. However, after a detailed discussion of the potential benefits and risks, deferasirox could be offered as the first-line option to individuals who show a strong preference for deferasirox, and may be a reasonable treatment option for people showing an intolerance or poor adherence to deferoxamine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.