• J. Med. Internet Res. · Jul 2020

    Racial and Ethnic Digital Divides in Posting COVID-19 Content on Social Media Among US Adults: Secondary Survey Analysis.

    • Celeste Campos-Castillo and Linnea I Laestadius.
    • Department of Sociology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.
    • J. Med. Internet Res. 2020 Jul 3; 22 (7): e20472.

    BackgroundPublic health surveillance experts are leveraging user-generated content on social media to track the spread and effects of COVID-19. However, racial and ethnic digital divides, which are disparities among people who have internet access and post on social media, can bias inferences. This bias is particularly problematic in the context of the COVID-19 pandemic because due to structural inequalities, members of racial and ethnic minority groups are disproportionately vulnerable to contracting the virus and to the deleterious economic and social effects from mitigation efforts. Further, important demographic intersections with race and ethnicity, such as gender and age, are rarely investigated in work characterizing social media users; however, they reflect additional axes of inequality shaping differential exposure to COVID-19 and its effects.ObjectiveThe aim of this study was to characterize how the race and ethnicity of US adults are associated with their odds of posting COVID-19 content on social media and how gender and age modify these odds.MethodsWe performed a secondary analysis of a survey conducted by the Pew Research Center from March 19 to 24, 2020, using a national probability sample (N=10,510). Respondents were recruited from an online panel, where panelists without an internet-enabled device were given one to keep at no cost. The binary dependent variable was responses to an item asking whether respondents "used social media to share or post information about the coronavirus." We used survey-weighted logistic regressions to estimate the odds of responding in the affirmative based on the race and ethnicity of respondents (white, black, Latino, other race/ethnicity), adjusted for covariates measuring sociodemographic background and COVID-19 experiences. We examined how gender (female, male) and age (18 to 30 years, 31 to 50 years, 51 to 64 years, and 65 years and older) intersected with race and ethnicity by estimating interactions.ResultsRespondents who identified as black (odds ratio [OR] 1.29, 95% CI 1.02-1.64; P=.03), Latino (OR 1.66, 95% CI 1.36-2.04; P<.001), or other races/ethnicities (OR 1.33, 95% CI 1.02-1.72; P=.03) had higher odds than respondents who identified as white of reporting that they posted COVID-19 content on social media. Women had higher odds of posting than men regardless of race and ethnicity (OR 1.58, 95% CI 1.39-1.80; P<.001). Among men, respondents who identified as black, Latino, or members of other races/ethnicities were significantly more likely to post than respondents who identified as white. Older adults (65 years or older) had significantly lower odds (OR 0.73, 95% CI 0.57-0.94; P=.01) of posting compared to younger adults (18-29 years), particularly among those identifying as other races/ethnicities. Latino respondents were the most likely to report posting across all age groups.ConclusionsIn the United States, members of racial and ethnic minority groups are most likely to contribute to COVID-19 content on social media, particularly among groups traditionally less likely to use social media (older adults and men). The next step is to ensure that data collection procedures capture this diversity by encompassing a breadth of search criteria and social media platforms.©Celeste Campos-Castillo, Linnea I. Laestadius. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.07.2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…