• European radiology · Dec 2020

    Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2.

    • Xu Fang, Xiao Li, Yun Bian, Xiang Ji, and Jianping Lu.
    • Department of Radiology, Changhai Hospital, The Navy Military Medical University, Changhai road 168, Shanghai, 200434, China.
    • Eur Radiol. 2020 Dec 1; 30 (12): 6888-6901.

    ObjectivesTo develop and validate a radiomics model for predicting 2019 novel coronavirus (COVID-19) pneumonia.MethodsFor this retrospective study, a radiomics model was developed on the basis of a training set consisting of 136 patients with COVID-19 pneumonia and 103 patients with other types of viral pneumonia. Radiomics features were extracted from the lung parenchyma window. A radiomics signature was built on the basis of reproducible features, using the least absolute shrinkage and selection operator method (LASSO). Multivariable logistic regression model was adopted to establish a radiomics nomogram. Nomogram performance was determined by its discrimination, calibration, and clinical usefulness. The model was validated in 90 consecutive patients, of which 56 patients had COVID-19 pneumonia and 34 patients had other types of viral pneumonia.ResultsThe radiomics signature, consisting of 3 selected features, was significantly associated with COVID-19 pneumonia (p < 0.05) in both training and validation sets. The multivariable logistic regression model included the radiomics signature and distribution; maximum lesion, hilar, and mediastinal lymph node enlargement; and pleural effusion. The individualized prediction nomogram showed good discrimination in the training sample (area under the receiver operating characteristic curve [AUC], 0.959; 95% confidence interval [CI], 0.933-0.985) and in the validation sample (AUC, 0.955; 95% CI, 0.899-0.995) and good calibration. The mixed model achieved better predictive efficacy than the clinical model. Decision curve analysis demonstrated that the radiomics nomogram was clinically useful.ConclusionsThe radiomics model derived has good performance for predicting COVID-19 pneumonia and may help in clinical decision-making.Key Points• A radiomics model showed good performance for prediction 2019 novel coronavirus pneumonia and favorable discrimination for other types of pneumonia on CT images. • A central or peripheral distribution, a maximum lesion range > 10 cm, the involvement of all five lobes, hilar and mediastinal lymph node enlargement, and no pleural effusion is associated with an increased risk of 2019 novel coronavirus pneumonia. • A radiomics model was superior to a clinical model in predicting 2019 novel coronavirus pneumonia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.