• Spine J · Feb 2015

    A novel lateral lumbar integrated plate-spacer interbody implant: in vitro biomechanical analysis.

    • Sushil Basra, Brandon Bucklen, Aditya Muzumdar, Saif Khalil, and Manasa Gudipally.
    • Long Island Spine Specialists PC, 763 Larkfield Rd, 2nd Floor, Commack, NY 11725, USA.
    • Spine J. 2015 Feb 1; 15 (2): 322-8.

    Background ContextLateral spacers (LSs) are the standard of care for a lateral lumbar interbody fusion. However, various types of fixation, such as bilateral pedicle screws (BPSs), unilateral pedicle screws (UPSs), bilateral facet screws (BFSs), and lateral plates (LPs) have been reported to increase the stability of LSs. The biomechanics of a novel lateral interbody implant, which is an interbody spacer with an integrated plate and two bone screws (lateral integrated plate-spacer [IPS-L]), has not been investigated yet.PurposeTo compare the biomechanical stability of IPS-L and LS with and without supplemental instrumentation.Study DesignHuman lumbar cadaveric study evaluating the biomechanical stability of an IPS-L.MethodsEach of the six (L2-L5) spines was sequentially tested in intact; IPS-L; IPS-L+UPS; IPS-L+BPS; IPS-L+BFS; LS+BFS; LS+UPS; LS+BPS; LS; and LS+LP, using a load-control protocol in which a ±8 Nm moment was applied, for three cycles each, in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Data results were obtained from the third cycle.ResultsThe IPS-L construct significantly reduced the range of motion (ROM) by 75% in FE, 70% in LB, and 57% in AR, compared with intact. Lateral integrated plate-spacer demonstrated similar biomechanical stability as LS+LP, and higher stability than the LS-alone construct, but the difference was not statistically significant.ConclusionsThe IPS-L evaluated in the present study demonstrated equivalent biomechanical stability compared with standard lateral interbody fusion constructs. The addition of BPSs to the IPS-L showed significant reduction in ROM in FE, and the addition of BFSs showed significant reduction in ROM in FE and AR, compared with the integrated plate-spacer alone construct. The IPS-L with supplemental fixation may be a viable option for lateral interbody fusion. Long-term clinical studies are further required to confirm these results.Copyright © 2015 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…