• Clinical biomechanics · Jul 2012

    Comparative Study

    A comparative biomechanical study of a novel integrated plate spacer for stabilization of cervical spine: an in vitro human cadaveric model.

    • Kamran Majid, Suresh Chinthakunta, Aditya Muzumdar, and Saif Khalil.
    • Orthopaedic and Spine Specialists, 1855 Powder Mill Road, York, PA 17402, USA. kmajid@orthospinesp.com
    • Clin Biomech (Bristol, Avon). 2012 Jul 1; 27 (6): 532-6.

    BackgroundIntegrated plate-spacer may provide adequate construct stability while potentially lowering operative time, decreasing complications, and providing less mechanical obstruction. The purpose of the current study was to compare the biomechanical stability of an anatomically profiled 2-screw integrated plate-spacer to a traditional spacer only and to a spacer and anterior cervical plate construct. In addition, the biomechanical stability of 2-screw integrated plate-spacer was compared to a commercially available 4-screw integrated plate-spacer.MethodsTwo groups, each of nine cervical cadaver spines (C2-C7), were tested under pure moments of 1.5Nm. Range of motion was recorded at C5-C6 in all loading conditions (flexion, extension, lateral bending, and axial rotation) for the following constructs: 1) Intact; 2) 2-screw or 4-screw integrated plate-spacer; 3) spacer and anterior cervical plate; and 4) spacer only.FindingsAll fusion constructs significantly reduced motion compared to the intact condition. Within the instrumented constructs, spacer and anterior cervical plate, 2-screw and 4-screw integrated plate-spacer resulted in reduced motion compared to the spacer only construct. No significant differences were found in motion between any of the instrumented conditions in any of the loading conditions.InterpretationThe application of integrated plate-spacer for anterior cervical discectomy and fusion is based on several factors including surgical ease-of-use, biomechanical characteristics, and surgeon preference. The study suggests that integrated plate-spacer provide biomechanical stability comparable to traditional spacer and plate constructs in the cervical spine. Clinical studies on integrated plate spacer devices are necessary to understand the performance of these devices in vivo.Copyright © 2011 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…