• Plos One · Jan 2018

    Comparative Study

    Comparison of spinal curvature parameters as determined by the ZEBRIS spine examination method and the Cobb method in children with scoliosis.

    • Mária Takács, Zsanett Orlovits, Bence Jáger, and Rita M Kiss.
    • Department of Orthopedics, MÁV Hospital Szolnok, Szolnok, Hungary.
    • Plos One. 2018 Jan 1; 13 (7): e0200245.

    Background And PurposeThe most common and gold standard method to diagnose and follow-up on scoliosis treatment is to capture biplanar X-ray images and then use these to determine the sagittal frontal spinal curvature angles by the Cobb method. Reducing exposure to radiation is an important aspect for consideration, especially regarding children. The ZEBRIS spinal examination method is an external, non-invasive measurement method that uses an ultrasound-based motion analysis system. The aim of this study is to compare angle values of patients with adolescent idiopathic scoliosis (AIS) determined by the ZEBRIS spine examination method with the angle values defined by the gold standard Cobb method on biplanar X-ray images.MethodsSubjects included 19 children with AIS (mean age 14.5±2.1 years, range 8-16 years, frontal plane thoracic Cobb angle 19.95±10.23°, thoracolumbar/lumbar angle 16.57±10.23°). The thoracic kyphosis and lumbar lordosis in the sagittal plane and the thoracic and lumbar scoliosis values were calculated by the Cobb method on biplanar X-ray images. The sagittal frontal spinal curvature angles were calculated from the position of the processus spinosus of 19 vertebrae, as determined by the ZEBRIS spine examination method. The validity of the ZEBRIS spine examination method was evaluated with Bland-Altman analyses between the sagittal and frontal spinal curvature parameters calculated from data determined by the ZEBRIS spine examination method and data obtained by the Cobb method on the X-ray images.Results And DiscussionThoracic spinal curvature angles in sagittal and in frontal planes can be measured with sufficient accuracy. The slopes of the linear regression lines for thoracic kyphosis (TK) and thoracic scoliosis (TSC) are close to one (1.00 and 0.79 respectively), and the intercept values are below 5 degrees. The correlation between the TK and TSC values determined by the two methods is significant (p = 0.000) and excellent (rTK = 0.95, rTSC = 0.85). The differences are in the limit of agreement. The lumbar lordosis (LL) in the sagittal plane shows a very good correlation (rLL = 0.76); however the differences between the angles determined by the two methods are out of the limit of agreement in patients with major lumbar lordosis (LL≥50°). The thoracolumbar/lumbar spinal curvature angles in the frontal plane determined by ZEBRIS spine examination were underestimated at curvatures larger than 15°, mainly due to the rotational and pathological deformities of the scoliotic vertebrae. However, the correlation between lumbar scoliosis (LSC) values determined by the two methods is significant (p = 0.000) and excellent (rLSC = 0.84), the slopes are below one (0.71), the intercept values are below 5 degrees, and the differences between the angles determined by the two methods are within the limits of agreement. We could conclude that ZEBRIS spinal examination is a valid and reliable method for determination of sagittal and frontal curvatures during the treatment of patients with scoliosis. However, it cannot replace the biplanar X-ray examination for the visualization of spinal curvatures in the sagittal and frontal planes and the rotation of vertebral bodies during the diagnosis and annual evaluation of the progression.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.