• Am. J. Physiol. Endocrinol. Metab. · Aug 2015

    Multicenter Study

    Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle.

    • Craig Porter, Nicholas M Hurren, Matthew V Cotter, Nisha Bhattarai, Paul T Reidy, Edgar L Dillon, William J Durham, Demidmaa Tuvdendorj, Melinda Sheffield-Moore, Elena Volpi, Labros S Sidossis, Blake B Rasmussen, and Elisabet Børsheim.
    • Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Shriners Hospitals for Children, Galveston, Texas; cr2porte@utmb.edu.
    • Am. J. Physiol. Endocrinol. Metab. 2015 Aug 1; 309 (3): E224-32.

    AbstractMitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (P < 0.01), as was maximal uncoupled respiration (P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults (P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration (P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production (P < 0.001) and greater reserve respiration (P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults. Copyright © 2015 the American Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.