• Metab. Clin. Exp. · Dec 2017

    Effects of acute hyperinsulinemia on skeletal muscle mitochondrial function, reactive oxygen species production, and metabolism in premenopausal women.

    • Jonathan L Warren, Sule Bulur, Fernando Ovalle, Samuel T Windham, Barbara A Gower, and Gordon Fisher.
    • Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
    • Metab. Clin. Exp. 2017 Dec 1; 77: 1-12.

    BackgroundAcute metabolic demands that promote excessive and/or prolonged reactive oxygen species production may stimulate changes in mitochondrial oxidative capacity.PurposeTo assess changes in skeletal muscle H2O2 production, mitochondrial function, and expression of genes at the mRNA and protein levels regulating energy metabolism and mitochondrial dynamics following a hyperinsulinemic-euglycemic clamp in a cohort of 11 healthy premenopausal women.MethodsSkeletal muscle biopsies of the vastus lateralis were taken at baseline and immediately following the conclusion of a hyperinsulinemic-euglycemic clamp. Mitochondrial production of H2O2 was quantified fluorometrically and mitochondrial oxidation supported by pyruvate, malate, and succinate (PMS) or palmitoyl carnitine and malate (PCM) was measured by high-resolution respirometry in permeabilized muscle fiber bundles. mRNA and protein levels were assessed by real time PCR and Western blotting.ResultsH2O2 emission increased following the clamp (P<0.05). Coupled respiration (State 3) supported by PMS and the respiratory control ratio (index of mitochondrial coupling) for both PMS and PCM were lower following the clamp (P<0.05). IRS1 mRNA decreased, whereas PGC1α and GLUT4 mRNA increased following the clamp (P≤0.05). PGC1α, IRS1, and phosphorylated AKT protein levels were higher after the clamp compared to baseline (P<0.05).ConclusionsThis study demonstrated that acute hyperinsulinemia induced H2O2 production and a concurrent decrease in coupling of mitochondrial respiration with ATP production in a cohort of healthy premenopausal women. Future studies should determine if this uncoupling ameliorates peripheral oxidative damage, and if this mechanism is impaired in diseases associated with chronic oxidative stress.Copyright © 2017 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.