• Cochrane Db Syst Rev · Oct 2020

    Review Meta Analysis

    Electromechanical-assisted training for walking after stroke.

    • Jan Mehrholz, Simone Thomas, Joachim Kugler, Marcus Pohl, and Bernhard Elsner.
    • Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany.
    • Cochrane Db Syst Rev. 2020 Oct 22; 10 (10): CD006185CD006185.

    BackgroundElectromechanical- and robot-assisted gait-training devices are used in rehabilitation and might help to improve walking after stroke. This is an update of a Cochrane Review first published in 2007 and previously updated in 2017.ObjectivesPrimary • To determine whether electromechanical- and robot-assisted gait training versus normal care improves walking after stroke Secondary • To determine whether electromechanical- and robot-assisted gait training versus normal care after stroke improves walking velocity, walking capacity, acceptability, and death from all causes until the end of the intervention phase SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched 6 January 2020); the Cochrane Central Register of Controlled Trials (CENTRAL; 2020 Issue 1), in the Cochrane Library; MEDLINE in Ovid (1950 to 6 January 2020); Embase (1980 to 6 January 2020); the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 20 November 2019); the Allied and Complementary Medicine Database (AMED; 1985 to 6 January 2020); Web of Science (1899 to 7 January 2020); SPORTDiscus (1949 to 6 January 2020); the Physiotherapy Evidence Database (PEDro; searched 7 January 2020); and the engineering databases COMPENDEX (1972 to 16 January 2020) and Inspec (1969 to 6 January 2020). We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trial authors in an effort to identify further published, unpublished, and ongoing trials.Selection CriteriaWe included all randomised controlled trials and randomised controlled cross-over trials in people over the age of 18 years diagnosed with stroke of any severity, at any stage, in any setting, evaluating electromechanical- and robot-assisted gait training versus normal care.Data Collection And AnalysisTwo review authors independently selected trials for inclusion, assessed methodological quality and risk of bias, and extracted data. We assessed the quality of evidence using the GRADE approach. The primary outcome was the proportion of participants walking independently at follow-up.Main ResultsWe included in this review update 62 trials involving 2440 participants. Electromechanical-assisted gait training in combination with physiotherapy increased the odds of participants becoming independent in walking (odds ratio (random effects) 2.01, 95% confidence interval (CI) 1.51 to 2.69; 38 studies, 1567 participants; P < 0.00001; I² = 0%; high-quality evidence) and increased mean walking velocity (mean difference (MD) 0.06 m/s, 95% CI 0.02 to 0.10; 42 studies, 1600 participants; P = 0.004; I² = 60%; low-quality evidence) but did not improve mean walking capacity (MD 10.9 metres walked in 6 minutes, 95% CI -5.7 to 27.4; 24 studies, 983 participants; P = 0.2; I² = 42%; moderate-quality evidence). Electromechanical-assisted gait training did not increase the risk of loss to the study during intervention nor the risk of death from all causes. Results must be interpreted with caution because (1) some trials investigated people who were independent in walking at the start of the study, (2) we found variation between trials with respect to devices used and duration and frequency of treatment, and (3) some trials included devices with functional electrical stimulation. Post hoc analysis showed that people who are non-ambulatory at the start of the intervention may benefit but ambulatory people may not benefit from this type of training. Post hoc analysis showed no differences between the types of devices used in studies regarding ability to walk but revealed differences between devices in terms of walking velocity and capacity.Authors' ConclusionsPeople who receive electromechanical-assisted gait training in combination with physiotherapy after stroke are more likely to achieve independent walking than people who receive gait training without these devices. We concluded that eight patients need to be treated to prevent one dependency in walking. Specifically, people in the first three months after stroke and those who are not able to walk seem to benefit most from this type of intervention. The role of the type of device is still not clear. Further research should consist of large definitive pragmatic phase 3 trials undertaken to address specific questions about the most effective frequency and duration of electromechanical-assisted gait training, as well as how long any benefit may last. Future trials should consider time post stroke in their trial design.Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.