• Biochem. Biophys. Res. Commun. · Feb 2001

    Selective beta(1)-blockade improves cardiac bioenergetics and function and decreases neuroendocrine activation in rats during early postinfarct remodeling.

    • E Omerovic, E Bollano, R Mobini, B Madhu, V Kujacic, B Soussi, A Hjalmarson , and F Waagstein.
    • Wallenberg and Lundberg Laboratories, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden.
    • Biochem. Biophys. Res. Commun. 2001 Feb 23; 281 (2): 491-8.

    AbstractIn spite of the solid evidence that beta-blockade reduces mortality and morbidity in congestive heart failure (CHF) this therapy continues to be underused in clinical praxis. The reason for this may lie in scarcity of knowledge about the mechanisms of beta-blockade action. The major aim of this study was to investigate in vivo whether selective beta(1)-blockade may improve cardiac energy metabolism in rats with myocardial infarction in early postinfarct remodeling phase. Myocardial infarction (MI) was induced in male Sprague-Dawley rats by ligation of the left coronary artery. Two different groups of rats were studied, rats with MI treated with metoprolol (5 mg/kg/h; n = 9) and rats with MI saline treated (n = 9). The treatment with metoprolol was given by subcutaneously implanted minipumps and was initiated at 3 days postinfarct and during the period of 4 weeks. All rats were investigated with noninvasive methods (31)P magnetic resonance spectroscopy (MRS) and transthoracic echocardiography 3 days after induction of MI and 4 weeks later. Phosphocreatine/ATP ratio was normalized after the treatment with metoprolol while it was 50% lower in the saline group (p < 0.001). In the metoprolol group stroke volume and ejection fraction increased while deceleration time of mitral early filling was longer (all p < 0.05). Left ventricular weight as well as volumes and dimensions were similar between the groups. Plasma levels of noradrenaline (p = 0.058), adrenaline (p < 0.01) and brain natriuretic peptide (p = 0.09) were lower in the metoprolol group. Selective beta(1)-blockade with high dose of metoprolol initiated in the early postinfarct phase improves myocardial energy metabolism and function and prevents overactivation of sympathetic system. The beneficial effect on myocardial bioenergetics may be an important mode of action of beta-blockers which contributes to the clinical benefits of the therapy in CHF.Copyright 2001 Academic Press.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.