-
Intensive care medicine · Dec 2020
Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study.
- Davide Chiumello, Mattia Busana, Silvia Coppola, Federica Romitti, Paolo Formenti, Matteo Bonifazi, Tommaso Pozzi, Maria Michela Palumbo, Massimo Cressoni, Peter Herrmann, Konrad Meissner, Michael Quintel, Luigi Camporota, John J Marini, and Luciano Gattinoni.
- Department of Anesthesiology and Intensive Care, ASST Santi e Paolo Hospital, University of Milan, Milan, Italy.
- Intensive Care Med. 2020 Dec 1; 46 (12): 218721962187-2196.
PurposeTo investigate whether COVID-19-ARDS differs from all-cause ARDS.MethodsThirty-two consecutive, mechanically ventilated COVID-19-ARDS patients were compared to two historical ARDS sub-populations 1:1 matched for PaO2/FiO2 or for compliance of the respiratory system. Gas exchange, hemodynamics and respiratory mechanics were recorded at 5 and 15 cmH2O PEEP. CT scan variables were measured at 5 cmH2O PEEP.ResultsAnthropometric characteristics were similar in COVID-19-ARDS, PaO2/FiO2-matched-ARDS and Compliance-matched-ARDS. The PaO2/FiO2-matched-ARDS and COVID-19-ARDS populations (both with PaO2/FiO2 106 ± 59 mmHg) had different respiratory system compliances (Crs) (39 ± 11 vs 49.9 ± 15.4 ml/cmH2O, p = 0.03). The Compliance-matched-ARDS and COVID-19-ARDS had similar Crs (50.1 ± 15.7 and 49.9 ± 15.4 ml/cmH2O, respectively) but significantly lower PaO2/FiO2 for the same Crs (160 ± 62 vs 106.5 ± 59.6 mmHg, p < 0.001). The three populations had similar lung weights but COVID-19-ARDS had significantly higher lung gas volume (PaO2/FiO2-matched-ARDS 930 ± 644 ml, COVID-19-ARDS 1670 ± 791 ml and Compliance-matched-ARDS 1301 ± 627 ml, p < 0.05). The venous admixture was significantly related to the non-aerated tissue in PaO2/FiO2-matched-ARDS and Compliance-matched-ARDS (p < 0.001) but unrelated in COVID-19-ARDS (p = 0.75), suggesting that hypoxemia was not only due to the extent of non-aerated tissue. Increasing PEEP from 5 to 15 cmH2O improved oxygenation in all groups. However, while lung mechanics and dead space improved in PaO2/FiO2-matched-ARDS, suggesting recruitment as primary mechanism, they remained unmodified or worsened in COVID-19-ARDS and Compliance-matched-ARDS, suggesting lower recruitment potential and/or blood flow redistribution.ConclusionsCOVID-19-ARDS is a subset of ARDS characterized overall by higher compliance and lung gas volume for a given PaO2/FiO2, at least when considered within the timeframe of our study.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.