• Pharmaceutical research · May 2019

    Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.

    • Worth Longest, Dale Farkas, Karl Bass, and Michael Hindle.
    • Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015, USA. pwlongest@vcu.edu.
    • Pharm. Res. 2019 May 28; 36 (8): 110.

    PurposeTo determine the predictive power of computational fluid dynamics (CFD)-based dispersion parameters in the development of a new inline DPI that is actuated with low volumes of air.MethodsFour new versions of a dose aerosolization and containment (DAC)-unit DPI were created with varying inlet and outlet orifice sizes and analyzed with results from five previous designs. A concurrent in vitro and CFD analysis was conducted to predict the emitted dose (ED; as a % of loaded dose) and aerosol mass median aerodynamic diameter (MMAD) produced by each device when actuated with 10 ml air bursts. CFD simulations of device operation were used to predict flow field and particle-based dispersion parameters.ResultsComparisons of experimental and CFD results indicated that multiple flow field and particle-based dispersion parameters could be used to predict ED (minimum RMS Error = 4.9%) and MMAD (minimum RMS Error = 0.04 μm) to a high degree of accuracy. Based on experiments, the best overall device produced mean (standard deviation; SD) ED = 82.9(4.3)% and mean MMAD (SD) = 1.73(0.07)μm, which were in close agreement with the CFD predictions.ConclusionsA unique relationship was identified in the DAC-unit DPI in which reducing turbulence also reduced the MMAD.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.