-
J Bone Joint Surg Am · Jun 2018
Comparison of Fixation Techniques for Acetabular Fractures Involving the Anterior Column with Disruption of the Quadrilateral Plate: A Biomechanical Study.
- Christian May, Mike Egloff, Andre Butscher, Keel Marius Johann Baptist MJB Department of Orthopaedic and Trauma Surgery, University of Bern, Inselspital, Bern, Switzerland., This Aebi, Klaus Arno Siebenrock, and Johannes Dominik Bastian.
- RMS Foundation, Bettlach, Switzerland.
- J Bone Joint Surg Am. 2018 Jun 20; 100 (12): 1047-1054.
BackgroundIn elderly patients who have sustained an acetabular fracture involving disruption of the quadrilateral plate (QLP), postoperative loading of the joint beyond the level of partial weight-bearing can result in medial redisplacement of the QLP. The purpose of this biomechanical study was to compare the performances of 4 different fixation constructs intended to prevent medial redisplacement of the QLP.MethodsAnterior column posterior hemitransverse (ACPHT) fractures with disruption of the QLP were created on synthetic hemipelves (fourth-generation Sawbones models) and subsequently stabilized with (1) a 12-hole plate bridging the QLP (Group 1), (2) the plate with added periarticular screws along the QLP (Group 2), (3) the plate combined with an infrapectineal buttress plate (Group 3), or (4) the plate with the added periarticular screws as well as the buttress plate (Group 4). The point of load application on the acetabulum was defined to be the same as the point of application of maximum vertical hip contact force during normal walking. Loads were applied to simulate either partial weight-bearing (20 cycles, from 35 to 350 N) or inadvertent supraphysiologic loads (linearly increasing loads until the onset of failure, defined as fragment displacement of >3 mm). A universal testing machine was synchronized with a digital image correlation system to optically track redisplacement at the QLP. The level of significance was set at p < 0.05.ResultsDuring experimental simulation of partial weight-bearing, maximum fracture step openings never exceeded 2 mm. During simulation of inadvertent supraphysiologic load, the median load to failure was higher (p < 0.05) in Group 2 (962 N; range, 798 to 1,000 N) and Group 4 (985 N; range, 887 to 1,000 N) compared with Group 1 (445 N; range, 377 to 583 N) and Group 3 (671 N; range, 447 to 720 N).ConclusionsAll 4 fixation constructs performed in an acceptable manner on testing with simulated partial weight-bearing. Only additional periarticular screws along the QLP increased the fixation strength.Clinical RelevanceRedisplacement of the QLP resulting in an incongruency of the hip joint has been associated with poor long-term outcomes. Within the constraints of this study, periarticular long screws were superior to infrapectineal buttress plates in preventing medial redisplacement of the QLP.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.