• J Diabetes Sci Technol · Jan 2015

    Hypoglycemia prediction using machine learning models for patients with type 2 diabetes.

    • Bharath Sudharsan, Malinda Peeples, and Mansur Shomali.
    • WellDoc, Inc, Baltimore, MD, USA.
    • J Diabetes Sci Technol. 2015 Jan 1; 9 (1): 86-90.

    AbstractMinimizing the occurrence of hypoglycemia in patients with type 2 diabetes is a challenging task since these patients typically check only 1 to 2 self-monitored blood glucose (SMBG) readings per day. We trained a probabilistic model using machine learning algorithms and SMBG values from real patients. Hypoglycemia was defined as a SMBG value < 70 mg/dL. We validated our model using multiple data sets. In addition, we trained a second model, which used patient SMBG values and information about patient medication administration. The optimal number of SMBG values needed by the model was approximately 10 per week. The sensitivity of the model for predicting a hypoglycemia event in the next 24 hours was 92% and the specificity was 70%. In the model that incorporated medication information, the prediction window was for the hour of hypoglycemia, and the specificity improved to 90%. Our machine learning models can predict hypoglycemia events with a high degree of sensitivity and specificity. These models-which have been validated retrospectively and if implemented in real time-could be useful tools for reducing hypoglycemia in vulnerable patients. © 2014 Diabetes Technology Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…