• Korean J Radiol · Jul 2020

    CT Quantitative Analysis and Its Relationship with Clinical Features for Assessing the Severity of Patients with COVID-19.

    • Dong Sun, Xiang Li, Dajing Guo, Lan Wu, Ting Chen, Zheng Fang, Linli Chen, Wenbing Zeng, and Ran Yang.
    • Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
    • Korean J Radiol. 2020 Jul 1; 21 (7): 859-868.

    ObjectiveTo investigate the value of initial CT quantitative analysis of ground-glass opacity (GGO), consolidation, and total lesion volume and its relationship with clinical features for assessing the severity of coronavirus disease 2019 (COVID-19).Materials And MethodsA total of 84 patients with COVID-19 were retrospectively reviewed from January 23, 2020 to February 19, 2020. Patients were divided into two groups: severe group (n = 23) and non-severe group (n = 61). Clinical symptoms, laboratory data, and CT findings on admission were analyzed. CT quantitative parameters, including GGO, consolidation, total lesion score, percentage GGO, and percentage consolidation (both relative to total lesion volume) were calculated. Relationships between the CT findings and laboratory data were estimated. Finally, a discrimination model was established to assess the severity of COVID-19.ResultsPatients in the severe group had higher baseline neutrophil percentage, increased high-sensitivity C-reactive protein (hs-CRP) and procalcitonin levels, and lower baseline lymphocyte count and lymphocyte percentage (p < 0.001). The severe group also had higher GGO score (p < 0.001), consolidation score (p < 0.001), total lesion score (p < 0.001), and percentage consolidation (p = 0.002), but had a lower percentage GGO (p = 0.008). These CT quantitative parameters were significantly correlated with laboratory inflammatory marker levels, including neutrophil percentage, lymphocyte count, lymphocyte percentage, hs-CRP level, and procalcitonin level (p < 0.05). The total lesion score demonstrated the best performance when the data cut-off was 8.2%. Furthermore, the area under the curve, sensitivity, and specificity were 93.8% (confidence interval [CI]: 86.8-100%), 91.3% (CI: 69.6-100%), and 91.8% (CI: 23.0-98.4%), respectively.ConclusionCT quantitative parameters showed strong correlations with laboratory inflammatory markers, suggesting that CT quantitative analysis might be an effective and important method for assessing the severity of COVID-19, and may provide additional guidance for planning clinical treatment strategies.Copyright © 2020 The Korean Society of Radiology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…