• JAMA neurology · Mar 2019

    Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders.

    • Bob Olsson, Erik Portelius, Nicholas C Cullen, Åsa Sandelius, Henrik Zetterberg, Ulf Andreasson, Kina Höglund, David J Irwin, Murray Grossman, Daniel Weintraub, Alice Chen-Plotkin, David Wolk, Leo McCluskey, Lauren Elman, Leslie M Shaw, Jon B Toledo, Jennifer McBride, Pilar Hernandez-Con, Virginia M-Y Lee, John Q Trojanowski, and Kaj Blennow.
    • Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
    • JAMA Neurol. 2019 Mar 1; 76 (3): 318-325.

    ImportanceNeuronal and axonal destruction are hallmarks of neurodegenerative diseases, but it is difficult to estimate the extent and progress of the damage in the disease process.ObjectiveTo investigate cerebrospinal fluid (CSF) levels of neurofilament light (NFL) protein, a marker of neuroaxonal degeneration, in control participants and patients with dementia, motor neuron disease, and parkinsonian disorders (determined by clinical criteria and autopsy), and determine its association with longitudinal cognitive decline.Design, Setting, And ParticipantsIn this case-control study, we investigated NFL levels in CSF obtained from controls and patients with several neurodegenerative diseases. Collection of samples occurred between 1996 and 2014, patients were followed up longitudinally for cognitive testing, and a portion were autopsied in a single center (University of Pennsylvania). Data were analyzed throughout 2016.ExposuresConcentrations of NFL in CSF.Main Outcomes And MeasuresLevels of CSF NFL and correlations with cognition scores.ResultsA total of 913 participants (mean [SD] age, 68.7 [10.0] years; 456 [49.9%] women) were included: 75 control participants plus 114 patients with mild cognitive impairment (MCI), 397 with Alzheimer disease, 96 with frontotemporal dementia, 68 with amyotrophic lateral sclerosis, 41 with Parkinson disease (PD), 19 with PD with MCI, 29 with PD dementia, 33 with dementia with Lewy bodies, 21 with corticobasal syndrome, and 20 with progressive supranuclear palsy. Cognitive testing follow-up occurred for 1 to 18 years (mean [SD], 0.98 [2.25] years); autopsy-verified diagnoses were available for 120 of 845 participants with diseases (14.2%). There was a stepwise increase in CSF NFL levels between control participants (median [range] score, 536 [398-777] pg/mL), participants with MCI (831 [526-1075] pg/mL), and those with Alzheimer disease (951 [758-1261] pg/mL), indicating that NFL levels increase with increasing cognitive impairment. Levels of NFL correlated inversely with baseline Mini-Mental State Examination scores (ρ, -0.19; P < .001) in the full cohort (n = 822) and annual score decline in the full cohort (ρ, 0.36, P < .001), participants with AD (ρ, 0.25; P < .001), and participants with FTD (ρ, 0.46; P = .003). Concentrations of NFL were highest in participants with amyotrophic lateral sclerosis (median [range], 4185 [2207-7453] pg/mL) and frontotemporal dementia (2094 [230-7744] pg/mL). In individuals with parkinsonian disorders, NFL concentrations were highest in those with progressive supranuclear palsy (median [range], 1578 [1287-3104] pg/mL) and corticobasal degeneration (1281 [828-2713] pg/mL). The NFL concentrations in CSF correlated with TDP-43 load in 13 of 17 brain regions in the full cohort. Adding NFL to β-amyloid 42, total tau, and phosphorylated tau increased accuracy of discrimination of diseases.Conclusions And RelevanceLevels of CSF NFL are associated with cognitive impairments in patients with Alzheimer disease and frontotemporal dementia. In other neurodegenerative disorders, NFL levels appear to reflect the intensity of the neurodegenerative processes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…