-
- Zhao Ju J Department of Cardiothoracic Surgery, University of Kentucky, Lexington, Kentucky; Department of Cardiopulmonary Bypass, Fuwai Cardiovascular Hospital, CAMS & P, Dongfang Wang, Cherry Ballard-Croft, Jingkun Wang, Po-Lin Hsu, Matthew Bacchetta, and Joseph B Zwischenberger.
- Department of Cardiothoracic Surgery, University of Kentucky, Lexington, Kentucky; Department of Cardiopulmonary Bypass, Fuwai Cardiovascular Hospital, CAMS & PUMC, Beijing, China.
- Ann. Thorac. Surg. 2017 Sep 1; 104 (3): 847-853.
BackgroundDifferential hypoxia exists in peripheral venoarterial (VA) extracorporeal membrane oxygenation (ECMO) patients with compromised lungs, causing hypoxic damage to heart or brain. We proposed an Avalon Elite (Maquet, Rastatt, Germany) double lumen cannula-based hybrid ECMO to add a venovenous (VV) blood flow into the pulmonary circulation onto the existing VA ECMO circuit to increase oxygen saturation in the left ventricle and ascending aorta, mitigating heart/brain hypoxia.MethodsThis hybrid ECMO circuit consists of two cannulas (27F Avalon Elite double lumen cannula from the inferior vena cava to the superior vena cava to right atrium to inferior vena cava; 17F infusion cannula in femoral artery), a blood pump, and a gas exchanger. This hybrid ECMO circuit was tested in 7 adult sheep with simulated lung failure. Total ECMO blood flow (2.8 to 3.3 L/min) was split between VV and VA blood flow. The VV blood flow was adjusted from 0% to 50% of total ECMO flow by approximately 10% increments.ResultsIn VA ECMO, simulated respiratory failure resulted in differential hypoxia (low oxygen level in left ventricle and high oxygen level in abdominal aorta). In hybrid ECMO, adding VV blood flow (10% to 50% of total ECMO flow) to the VA ECMO circuit progressively increased left ventricle blood oxygen saturation from 70% ± 8% at zero VV blood flow (pure VA ECMO) to 82% ± 6% at 300 mL/min VV blood flow, and 96% ± 6% at 1,700 mL/min VV blood flow.ConclusionsThe Avalon Elite double-lumen cannula-based hybrid ECMO circuit is a simple circuit that provides efficient performance and flexible VA/VV blood distribution. In this hybrid ECMO circuit, incremental VV blood flow (10% to 50%) progressively increased left ventricular blood oxygen level, ensuring adequate heart and brain oxygen supply.Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.