-
- Jennifer Meddings, Heidi Reichert, Shawna N Smith, Theodore J Iwashyna, Kenneth M Langa, Timothy P Hofer, and Laurence F McMahon.
- Department of Internal Medicine, Division of General Medicine, University of Michigan Medical School, 2800 Plymouth Road, Building 16, 430W, Ann Arbor, MI, 48109, USA. meddings@umich.edu.
- J Gen Intern Med. 2017 Jan 1; 32 (1): 71-80.
BackgroundReadmission rates after pneumonia, heart failure, and acute myocardial infarction hospitalizations are risk-adjusted for age, gender, and medical comorbidities and used to penalize hospitals.ObjectiveTo assess the impact of disability and social determinants of health on condition-specific readmissions beyond current risk adjustment.Design, Setting, And ParticipantsRetrospective cohort study of Medicare patients using 1) linked Health and Retirement Study-Medicare claims data (HRS-CMS) and 2) Healthcare Cost and Utilization Project State Inpatient Databases (Florida, Washington) linked with ZIP Code-level measures from the Census American Community Survey (ACS-HCUP). Multilevel logistic regression models assessed the impact of disability and selected social determinants of health on readmission beyond current risk adjustment.Main MeasuresOutcomes measured were readmissions ≤30 days after hospitalizations for pneumonia, heart failure, or acute myocardial infarction. HRS-CMS models included disability measures (activities of daily living [ADL] limitations, cognitive impairment, nursing home residence, home healthcare use) and social determinants of health (spouse, children, wealth, Medicaid, race). ACS-HCUP model measures were ZIP Code-percentage of residents ≥65 years of age with ADL difficulty, spouse, income, Medicaid, and patient-level and hospital-level race.Key ResultsFor pneumonia, ≥3 ADL difficulties (OR 1.61, CI 1.079-2.391) and prior home healthcare needs (OR 1.68, CI 1.204-2.355) increased readmission in HRS-CMS models (N = 1631); ADL difficulties (OR 1.20, CI 1.063-1.352) and 'other' race (OR 1.14, CI 1.001-1.301) increased readmission in ACS-HCUP models (N = 27,297). For heart failure, children (OR 0.66, CI 0.437-0.984) and wealth (OR 0.53, CI 0.349-0.787) lowered readmission in HRS-CMS models (N = 2068), while black (OR 1.17, CI 1.056-1.292) and 'other' race (OR 1.14, CI 1.036-1.260) increased readmission in ACS-HCUP models (N = 37,612). For acute myocardial infarction, nursing home status (OR 4.04, CI 1.212-13.440) increased readmission in HRS-CMS models (N = 833); 'other' patient-level race (OR 1.18, CI 1.012-1.385) and hospital-level race (OR 1.06, CI 1.001-1.125) increased readmission in ACS-HCUP models (N = 17,496).ConclusionsDisability and social determinants of health influence readmission risk when added to the current Medicare risk adjustment models, but the effect varies by condition.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.