• Proc. Natl. Acad. Sci. U.S.A. · Oct 2013

    Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model.

    • Stephanie Janezic, Sarah Threlfell, Paul D Dodson, Megan J Dowie, Tonya N Taylor, Dawid Potgieter, Laura Parkkinen, Steven L Senior, Sabina Anwar, Brent Ryan, Thierry Deltheil, Polina Kosillo, Milena Cioroch, Katharina Wagner, Olaf Ansorge, David M Bannerman, J Paul Bolam, Peter J Magill, Stephanie J Cragg, and Richard Wade-Martins.
    • Oxford Parkinson's Disease Centre Department of Physiology, Anatomy and Genetics, Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, and Department of Experimental Psychology, University of Oxford, Oxford OX1 3QX, United Kingdom.
    • Proc. Natl. Acad. Sci. U.S.A. 2013 Oct 15; 110 (42): E4016-25.

    AbstractThe pathological end-state of Parkinson disease is well described from postmortem tissue, but there remains a pressing need to define early functional changes to susceptible neurons and circuits. In particular, mechanisms underlying the vulnerability of the dopamine neurons of the substantia nigra pars compacta (SNc) and the importance of protein aggregation in driving the disease process remain to be determined. To better understand the sequence of events occurring in familial and sporadic Parkinson disease, we generated bacterial artificial chromosome transgenic mice (SNCA-OVX) that express wild-type α-synuclein from the complete human SNCA locus at disease-relevant levels and display a transgene expression profile that recapitulates that of endogenous α-synuclein. SNCA-OVX mice display age-dependent loss of nigrostriatal dopamine neurons and motor impairments characteristic of Parkinson disease. This phenotype is preceded by early deficits in dopamine release from terminals in the dorsal, but not ventral, striatum. Such neurotransmission deficits are not seen at either noradrenergic or serotoninergic terminals. Dopamine release deficits are associated with an altered distribution of vesicles in dopaminergic axons in the dorsal striatum. Aged SNCA-OVX mice exhibit reduced firing of SNc dopamine neurons in vivo measured by juxtacellular recording of neurochemically identified neurons. These progressive changes in vulnerable SNc neurons were observed independently of overt protein aggregation, suggesting neurophysiological changes precede, and are not driven by, aggregate formation. This longitudinal phenotyping strategy in SNCA-OVX mice thus provides insights into the region-specific neuronal disturbances preceding and accompanying Parkinson disease.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.