• Neuropsychologia · Jun 2018

    Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.

    • Margaret A O'Connell and Chandramallika Basak.
    • Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX 75080, USA.
    • Neuropsychologia. 2018 Jun 1; 114: 50-64.

    AbstractStudies investigating the strength and membership of regions within multiple functional networks primarily focus on either resting state or single cognitive tasks. The goals of the current study were to investigate whether task-related functional connectivity changes with task complexity, and whether this connectivity-complexity relationship is age-sensitive. We assessed seed-to-voxel functional connectivity for the default mode network (DMN) and two attentional networks [cingulo-opercular (CO), fronto-parietal (FP)] in three cognitive control tasks of increasing complexity (Single task, Dual task, and Memory Updating), across younger and older adults (N = 52; NYoung = 23; NOld = 29). The three tasks systematically varied in cognitive control demands due to differing maintenance, switching, and updating requirements. Functional connectivity for all networks, resulting from task > rest contrasts, increased with greater task complexity, irrespective of age and gray matter volume. Moreover, between-network connectivity for DMN, CO, and FP regions was greatest for working memory updating, the most complex task. Regarding age-related differences in accuracy, none were observed for Single or Dual tasks, but older adults had poorer accuracy in Memory Updating. More anterior frontal clusters of functional connectivity were observed for older, compared to younger, adults; these were limited to seeds of the two attentional networks. Importantly, increased connectivity in these additional frontal regions in older adults were non-compensatory, because they were associated with detrimental task performance, especially Memory Updating. For the Memory Updating > Rest, the younger > older contrast resulted in greater DMN seed connectivity to regions in the other two attentional networks, implicating increased reliance on between-network connectivity for the DMN seeds during complex cognitive tasks. Our results also implicate functional connectivity between attentional networks and the cerebellum during cognitive control. Reliability of multiple seeds in the seed-to-voxel connectivity is also discussed.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.