• Stud Health Technol Inform · Jan 2013

    Engineering natural language processing solutions for structured information from clinical text: extracting sentinel events from palliative care consult letters.

    • Neil Barrett, Jens H Weber-Jahnke, and Vincent Thai.
    • Department of Computer Science, University of Victoria, Victoria, BC, Canada.
    • Stud Health Technol Inform. 2013 Jan 1; 192: 594-8.

    AbstractDespite a trend to formalize and codify medical information, natural language communications still play a prominent role in health care workflows, in particular when it comes to hand-overs between providers. Natural language processing (NLP) attempts to bridge the gap between informal, natural language information and coded, machine-interpretable data. This paper reports on a study that applies an advanced NLP method for the extraction of sentinel events in palliative care consult letters. Sentinel events are of interest to predict survival and trajectory for patients with acute palliative conditions. Our NLP method combines several novel characteristics, e.g., the consideration of topological knowledge structures sourced from an ontological terminology system (SNOMED CT). The method has been applied to the extraction of different types of sentinel events, including simple facts, temporal conditions, quantities, and degrees. A random selection of 215 anonymized consult letters was used for the study. The results of the NLP extraction were evaluated by comparison with coded sentinel event data captured independently by clinicians. The average accuracy of the automated extraction was 73.6%.

      Pubmed     Full text   Copy Citation  

      Add institutional full text...

    Notes

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.