• Endocrinology · Jan 2014

    Insulin-like growth factor-1 receptor-mediated inhibition of A-type K(+) current induces sensory neuronal hyperexcitability through the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 pathways, independently of Akt.

    • Hua Wang, Jianzhong Qin, Shan Gong, Bo Feng, Yuan Zhang, and Jin Tao.
    • Department of Neurobiology (H.W., S.G., J.T.), Medical College of Soochow University, Suzhou 215123, China; Institute of Neuroscience & Department of Neurology of the Second Affiliated Hospital (J.Q., S.G., Y.Z., J.T.), Soochow University, Suzhou 215004, China; and Department of Endocrinology (H.W., B.F.), East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
    • Endocrinology. 2014 Jan 1; 155 (1): 168-79.

    AbstractAlthough IGF-1 has been implicated in mediating hypersensitivity to pain, the underlying mechanisms remain unclear. We identified a novel functional of the IGF-1 receptor (IGF-1R) in regulating A-type K(+) currents (IA) as well as membrane excitability in small trigeminal ganglion neurons. Our results showed that IGF-1 reversibly decreased IA, whereas the sustained delayed rectifier K(+) current was unaffected. This IGF-1-induced IA decrease was associated with a hyperpolarizing shift in the voltage dependence of inactivation and was blocked by the IGF-1R antagonist PQ-401; an insulin receptor tyrosine kinase inhibitor had no such effect. An small interfering RNA targeting the IGF-1R, or pretreatment of neurons with specific phosphatidylinositol 3-kinase (PI3K) inhibitors abolished the IGF-1-induced IA decrease. Surprisingly, IGF-1-induced effects on IA were not regulated by Akt, a common downstream target of PI3K. The MAPK/ERK kinase inhibitor U0126, but not its inactive analog U0124, as well as the c-Raf-specific inhibitor GW5074, blocked the IGF-1-induced IA response. Analysis of phospho-ERK (p-ERK) showed that IGF-1 significantly activated ERK1/2 whereas p-JNK and p-p38 were unaffected. Moreover, the IGF-1-induced p-ERK1/2 increase was attenuated by PI3K and c-Raf inhibition, but not by Akt blockade. Functionally, we observed a significantly increased action potential firing rate induced by IGF-1; pretreatment with 4-aminopyridine abolished this effect. Taken together, our results indicate that IGF-1 attenuates IA through sequential activation of the PI3K- and c-Raf-dependent ERK1/2 signaling cascade. This occurred via the activation of IGF-1R and might contribute to neuronal hyperexcitability in small trigeminal ganglion neurons.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.