• Eur. J. Pharmacol. · May 1996

    Differential serotoninergic and dopaminergic activities of the (R)- and the (S)-enantiomers of 2-(di-n-propylamino)tetralin.

    • H Yu, Y Liu, A Malmberg, N Mohell, U Hacksell, and T Lewander.
    • Department of Psychiatry (Ulleråker), Uppsala University, Sweden.
    • Eur. J. Pharmacol. 1996 May 15; 303 (3): 151-62.

    AbstractRacemic 2-(di-n-propylamino)tetralin ((R,S)-DPAT), which lacks phenolic or other aromatic substituents, induces both dopaminergic (sniffing, licking and gnawing) and serotoninergic (forepaw treading and flat body posture) behavioural responses. The present study shows that s.c. administration of (R)-DPAT induces typical 5-HT1A receptor agonist behaviours. These effects are blocked by the 5-HT1A receptor antagonist (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)-UH-301). Administration of (S)-DPAT induces dopaminergic behaviours, which are fully antagonised by raclopride, a dopamine D2 receptor antagonist. Both enantiomers induce hypothermia, (R)-DPAT being antagonised by (S)-UH-301, whereas (S)-DPAT is antagonised by raclopride. The accumulation of 5-hydroxytryptophan and DOPA (3,4-dihydroxyphenylalanine) after decarboxylase inhibition that reflects presynaptic actions on 5-HT (5-hydroxytryptamine, serotonin) and dopamine neurons, respectively, are inhibited by both enantiomers of DPAT. (R)-DPAT is more potent than (S)-DPAT as an inhibitor of 5-hydroxytryptophan accumulation whereas (S)-DPAT is more potent than (R)-DPAT as an inhibitor of DOPA accumulation. Thus, in functional tests of postsynaptic actions (R)-DPAT behaves as a 5-HT1A receptor agonist and (S)-DPAT as a dopamine D2 receptor agonist. Presynaptically, (R)-DPAT shows selectivity for 5-HT1A receptors and (S)-DPAT for dopamine D2 receptors. Receptor binding studies, utilizing [3H]8-hydroxy-2-(di-n-propylamino)tetralin and [3H]quinpirole as radioligands for 5-HT1A and dopamine D2 receptors, respectively, showed (R)-DPAT to have a 3-fold higher affinity than (S)-DPAT for 5-HT1A receptors, whereas (S)-DPAT had a 6-fold higher affinity than (R)-DPAT for dopamine D2 receptors. Thus, the results from receptor binding studies support the conclusion that (R)- and (S)-DPAT are agonists showing selectivity for 5-HT1A and dopamine D2 receptors, respectively. Taken together, these findings may explain previous controversies with regard to the pharmacology of racemic DPAT and re-emphasise the necessity to study pure enantiomers of chiral compounds.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.