• Am. J. Epidemiol. · Aug 2004

    Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer.

    • Kyle Steenland and Sander Greenland.
    • Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA. nsteenl@sph.emory.edu
    • Am. J. Epidemiol. 2004 Aug 15; 160 (4): 384-92.

    AbstractConventional confidence intervals reflect uncertainty due to random error but omit uncertainty due to biases, such as confounding, selection bias, and measurement error. Such uncertainty can be quantified, especially if the investigator has some idea of the amount of such bias. A traditional sensitivity analysis produces one or more point estimates for the exposure effect hypothetically adjusted for bias, but it does not provide a range of effect measures given the likely range of bias. Here the authors used Monte Carlo sensitivity analysis and Bayesian bias analysis to provide such a range, using data from a US silica-lung cancer study in which results were potentially confounded by smoking. After positing a distribution for the smoking habits of workers and referents, a distribution of rate ratios for the effect of smoking on lung cancer, and a model for the bias parameter, the authors derived a distribution for the silica-lung cancer rate ratios hypothetically adjusted for smoking. The original standardized mortality ratio for the silica-lung cancer relation was 1.60 (95% confidence interval: 1.31, 1.93). Monte Carlo sensitivity analysis, adjusting for possible confounding by smoking, led to an adjusted standardized mortality ratio of 1.43 (95% Monte Carlo limits: 1.15, 1.78). Bayesian results were similar (95% posterior limits: 1.13, 1.84). The authors believe that these types of analyses, which make explicit and quantify sources of uncertainty, should be more widely adopted by epidemiologists.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…