-
- Tara Kirk Sell, Divya Hosangadi, and Marc Trotochaud.
- Johns Hopkins Center for Health Security, Baltimore, USA. tksell@jhu.edu.
- Bmc Public Health. 2020 May 7; 20 (1): 550.
BackgroundThe Ebola communication crisis of 2014 generated widespread fear and attention among Western news media, social media users, and members of the United States (US) public. Health communicators need more information on misinformation and the social media environment during a fear-inducing disease outbreak to improve communication practices. The purpose of this study was to describe the content of Ebola-related tweets with a specific focus on misinformation, political content, health related content, risk framing, and rumors.MethodsWe examined tweets from a random 1% sample of all tweets published September 30th - October 30th, 2014, filtered for English-language tweets mentioning "Ebola" in the content or hashtag, that had at least 1 retweet (N = 72,775 tweets). A randomly selected subset of 3639 (5%) tweets were evaluated for inclusion. We analyzed the 3113 tweets that meet inclusion criteria using public health trained human coders to assess tweet characteristics (joke, opinion, discord), veracity (true, false, partially false), political context, risk frame, health context, Ebola specific messages, and rumors. We assessed the proportion of tweets with specific content using descriptive statistics and chi-squared tests.ResultsOf non-joke tweets, 10% of Ebola-related tweets contained false or partially false information. Twenty-five percent were related to politics, 28% contained content that provoked reader response or promoted discord, 42% contained risk elevating messages and 72% were related to health. The most frequent rumor mentioned focused on government conspiracy. When comparing tweets with true information to tweets with misinformation, a greater percentage of tweets with misinformation were political in nature (36% vs 15%) and contained discord-inducing statements (45% vs 10%). Discord-inducing statements and political messages were both significantly more common in tweets containing misinformation compared with those without(p < 0.001).ConclusionsResults highlight the importance of anticipating politicization of disease outbreaks, and the need for policy makers and social media companies to build partnerships and develop response frameworks in advance of an event. While each public health event is different, our findings provide insight into the possible social media environment during a future epidemic and could help optimize potential public health communication strategies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.