-
Int J Comput Assist Radiol Surg · Nov 2018
Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics.
- Felicitas J Detmer, Bong Jae Chung, Fernando Mut, Martin Slawski, Farid Hamzei-Sichani, Christopher Putman, Carlos Jiménez, and Juan R Cebral.
- Bioengineering Department, Volgenau School of Engineering, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA. fdetmer@gmu.edu.
- Int J Comput Assist Radiol Surg. 2018 Nov 1; 13 (11): 1767-1779.
PurposeUnruptured cerebral aneurysms pose a dilemma for physicians who need to weigh the risk of a devastating subarachnoid hemorrhage against the risk of surgery or endovascular treatment and their complications when deciding on a treatment strategy. A prediction model could potentially support such treatment decisions. The aim of this study was to develop and internally validate a model for aneurysm rupture based on hemodynamic and geometric parameters, aneurysm location, and patient gender and age.MethodsCross-sectional data from 1061 patients were used for image-based computational fluid dynamics and shape characterization of 1631 aneurysms for training an aneurysm rupture probability model using logistic group Lasso regression. The model's discrimination and calibration were internally validated based on the area under the curve (AUC) of the receiver operating characteristic and calibration plots.ResultsThe final model retained 11 hemodynamic and 12 morphological variables, aneurysm location, as well as patient age and gender. An adverse hemodynamic environment characterized by a higher maximum oscillatory shear index, higher kinetic energy and smaller low shear area as well as a more complex aneurysm shape, male gender and younger age were associated with an increased rupture risk. The corresponding AUC of the model was 0.86 (95% CI [0.85, 0.86], after correction for optimism 0.84).ConclusionThe model combining variables from various domains was able to discriminate between ruptured and unruptured aneurysms with an AUC of 86%. Internal validation indicated potential for the application of this model in clinical practice after evaluation with longitudinal data.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.