• European radiology · Sep 2020

    Multicenter Study

    Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study.

    • Guozhong Chen, Mengjie Lu, Zhao Shi, Shuang Xia, Yuan Ren, Zhen Liu, Xiuxian Liu, Zhiyong Li, Li Mao, Xiu Li Li, Bo Zhang, Long Jiang Zhang, and Guang Ming Lu.
    • Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
    • Eur Radiol. 2020 Sep 1; 30 (9): 5170-5182.

    ObjectivesTo build models based on conventional logistic regression (LR) and machine learning (ML) algorithms combining clinical, morphological, and hemodynamic information to predict individual rupture status of unruptured intracranial aneurysms (UIAs), afterwards tested in internal and external validation datasets.MethodsPatients with intracranial aneurysms diagnosed by computed tomography angiography and confirmed by invasive cerebral angiograph or clipping surgery were included. The prediction models were developed based on clinical, aneurysm morphological, and hemodynamic parameters by conventional LR and ML methods.ResultsThe training, internal validation, and external validation cohorts were composed of 807 patients, 200 patients, and 108 patients, respectively. The area under curves (AUCs) of conventional LR models 1 (clinical), 2 (clinical and aneurysm morphological), and 3 (clinical, aneurysm morphological and hemodynamic characteristics) were 0.608, 0.765, and 0.886, respectively (all p < 0.05). The AUCs of ML models using random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM) were 0.871, 0.851, and 0.863, respectively. There were no difference among AUCs of conventional LR, RF, and SVM (all p > 0.05/6), while the AUC of MLP was lower than that of conventional LR (p = 0.0055).ConclusionHemodynamic parameters play an important role in the prediction performance of the models. ML methods cannot outperform conventional LR in prediction models for rupture status of UIAs integrating clinical, aneurysm morphological, and hemodynamic parameters.Key Points• The addition of hemodynamic parameters can improve prediction performance for rupture status of unruptured intracranial aneurysms. • Machine learning algorithms cannot outperform conventional logistic regression in prediction models for rupture status integrating clinical, aneurysm morphological, and hemodynamic parameters. • Models integrating clinical, aneurysm morphological, and hemodynamic parameters may help choose the optimal management.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.