-
Acta neurochirurgica · Dec 2018
External validation of cerebral aneurysm rupture probability model with data from two patient cohorts.
- Felicitas J Detmer, Daniel Fajardo-Jiménez, Fernando Mut, Norman Juchler, Sven Hirsch, Vitor Mendes Pereira, Philippe Bijlenga, and Juan R Cebral.
- Bioengineering Department, Volgenau School of Engineering, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA. fdetmer@gmu.edu.
- Acta Neurochir (Wien). 2018 Dec 1; 160 (12): 2425-2434.
BackgroundFor a treatment decision of unruptured cerebral aneurysms, physicians and patients need to weigh the risk of treatment against the risk of hemorrhagic stroke caused by aneurysm rupture. The aim of this study was to externally evaluate a recently developed statistical aneurysm rupture probability model, which could potentially support such treatment decisions.MethodsSegmented image data and patient information obtained from two patient cohorts including 203 patients with 249 aneurysms were used for patient-specific computational fluid dynamics simulations and subsequent evaluation of the statistical model in terms of accuracy, discrimination, and goodness of fit. The model's performance was further compared to a similarity-based approach for rupture assessment by identifying aneurysms in the training cohort that were similar in terms of hemodynamics and shape compared to a given aneurysm from the external cohorts.ResultsWhen applied to the external data, the model achieved a good discrimination and goodness of fit (area under the receiver operating characteristic curve AUC = 0.82), which was only slightly reduced compared to the optimism-corrected AUC in the training population (AUC = 0.84). The accuracy metrics indicated a small decrease in accuracy compared to the training data (misclassification error of 0.24 vs. 0.21). The model's prediction accuracy was improved when combined with the similarity approach (misclassification error of 0.14).ConclusionsThe model's performance measures indicated a good generalizability for data acquired at different clinical institutions. Combining the model-based and similarity-based approach could further improve the assessment and interpretation of new cases, demonstrating its potential use for clinical risk assessment.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.