-
Microb. Drug Resist. · Aug 2015
Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus.
- Lucinda J Bessa, Andreia Palmeira, Ana S Gomes, Vitor Vasconcelos, Emília Sousa, Madalena Pinto, and Paulo Martins da Costa.
- 1 Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal .
- Microb. Drug Resist. 2015 Aug 1; 21 (4): 404-15.
AbstractThe extensive use of antimicrobials is leaving medicine with few effective therapeutic options to treat many infections due to the fact that many organisms developed resistance to commonly used drugs. It is therefore pertinent to search not only for new antimicrobials but also for compounds able to restore or potentiate the activity of existing antibiotics. We have screened a library consisting of 40 (thio)xanthone derivatives for antibacterial activity and possible synergistic effects when used in combination with antibiotics. Nine out of the 40 compounds exhibited antibacterial activity against Gram-positive bacteria. Two xanthone derivatives, 1-formyl-4-hydroxy-3-methoxy (7), 2-formyl-3-hydroxy-4-methoxyxanthone (8) and the thioxanthone derivative 1-((2-(diethylamino)ethyl)amino)-4-propoxythioxanthone (10) and its hydrochloride form 13, showed activity against a methicillin-resistant Staphylococcus aureus (MRSA) isolate with minimum inhibitory concentration (MIC) values lower than 256 μg/ml. Thioxanthone 10 demonstrated antibacterial activity and also synergy when combined with ampicillin and oxacillin against MRSA. Additionally, thioxanthone 1-(piperidin-1-yl)-4-propoxythioxanthone (9), despite not having antibacterial activity presented remarkable synergy with oxacillin against MRSA; the MIC of tioxanthone 9 and oxacillin when both were in combination were 128 and 8 μg/ml, respectively. Thioxanthones 9 and 10 were also found to be synergistic when both were combined. Subsequently, docking simulations between thioxanthones 9 and 10 and the allosteric domain of penicillin-binding protein 2A (PBP2A) were undertaken in AutoDock Vina. Both compounds had the ability to bind with an allosteric domain of PBP2A, which may explain their synergy with oxacillin. These two thioxanthone derivatives with different profiles may be promising tools for restoring the activity of oxacillin against MRSA.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.