• Int J Cardiovasc Imaging · Dec 2018

    The value of speckle-tracking echocardiography in identifying right heart dysfunction in patients with chronic thromboembolic pulmonary hypertension.

    • Ai-Li Li, Zhen-Guo Zhai, Ya-Nan Zhai, Wan-Mu Xie, Jun Wan, and Xin-Cao Tao.
    • Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China. echoaili@163.com.
    • Int J Cardiovasc Imaging. 2018 Dec 1; 34 (12): 1895-1904.

    AbstractRight ventricular (RV) function is a significantly important factor in the determination of the prognosis of chronic thromboembolic pulmonary hypertension (CTEPH) patients. Speckle-tracking echocardiography (STE) is an angle-independent new technique for quantifying myocardial deformation that is capable of providing data on multiple parameters including longitudinal and transverse information of the myocardium. In the present study, we aimed to study the advantages of STE-derived parameters in identifying RV dysfunction in CTEPH patients. Sixty CTEPH patients (mean age: 55 years ± 13 years; 25 males) and 30 normal controls (mean age: 54 years ± 14 years; 14 males) were enrolled in this study. RV free wall (RVFW) systolic peak longitudinal strain (LS) including the basal, mid-, and apical-segments and the basal longitudinal and transverse displacement (basal-DL and basal-DT) were measured by STE. Global LS (GLS) of the RV was calculated by averaging the LS value of the 3 segments of RVFW. Clinical data of CTEPH patients were collected. CTEPH patients were divided into 2 subgroups according to the World Health Organization function classification. Clinical right heart failure (RHF) was defined as the presence of symptoms of heart failure and signs of systemic circulation congestion during hospitalization. The apical segment LS of the RVFW was lower than that in the basal and mid-segments in the control group (P < 0.001), but no significant difference was found among the 3 segments of LS in the CTEPH group (P = 0.263). When we used the cutoff value recommended by the American Society of Echocardiography guidelines to identify abnormal RV function, 30 CTEPH patients (50%) by tricuspid annular plane systolic excursion (TAPSE), 42 patients (70%) by fractional area change (FAC), 20 patients (33.33%) by RV index of myocardial performance (RVIMP), and 46 patients (77%) patients by GLS were determined to have abnormal RV function, respectively. Among multiple RV function indicators, TAPSE, FAC, GLS, basal-DL, and N-terminal pronatriuretic B-type natriuretic peptide showed significant differences between CTEPH patients with mild (WHO II) and severe symptoms (WHO III/IV) (all P < 0.001), while RVIMP and basal-DT showed no significant difference (P = 0.188 and P = 0.394, respectively). Pearson correlation analysis showed that GLS has no correlation with sPAP as evaluated by echocardiography in CTEPH patients (r = - 0.079, P = 0.574), and a weak to moderate correlation with RA area (r = 0.488, P = 0.000), the RV diameter (r = 0.429, P = 0.001), and the RVFW thickness (r = 0.344, P = 0.009). On receiver operating characteristic analysis, GLS has the largest area under the curve to identify RHF when the cutoff value was - 13.45%, the sensitivity was 78.2%, and the specificity was 84.6%, separately. Our study demonstrated that the depression of regional LS of RVFW is more pronounced in the basal and middle segments in CTEPH patients. Also, the longitudinal movement is much more important than the transverse movement when evaluating RV systolic function. As compared with conventional parameters, RVFW GLS showed more sensitivity to identify abnormal RV function and had the largest AUC for identifying RHF. Additionally, GLS showed no correlation with sPAP and a weak correlation with right heart morphological parameters in our CTEPH cohort.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.