-
Acta Pharmacol. Sin. · Nov 2018
ReviewCancer immune checkpoint blockade therapy and its associated autoimmune cardiotoxicity.
- Jiu-Cheng Zhang, Wei-Dong Chen, Jean Bustamante Alvarez, Kelly Jia, Lei Shi, Qiang Wang, Ning Zou, Kai He, and Hua Zhu.
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, 430079, China.
- Acta Pharmacol. Sin. 2018 Nov 1; 39 (11): 1693-1698.
AbstractThe immune checkpoint molecules are emerged in the evolution to protect the host from self-attacks by activated T cells. However, cancer cells, as a strategy to survive and expand, can hijack these molecules and mechanisms to suppress T cell-mediated immune responses. Therefore, an idea of blocking the checkpoint molecules to enhance the anti-tumor activities of the host immune system has been developed and applied to the cancer therapy after discovery of the inhibitory T cell co-receptor, cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and further enhanced on the identification of PD-1 and its ligands. Since 2010, several checkpoint inhibitors have been approved by FDA and many more are in clinical trials. In the treatment of advanced cancers, these inhibitors significantly increased response rates and survival benefits. However, accompanied with the striking results, immune-related adverse events (irAEs) that broadly occurred in many organs were observed and reported, some of which were fatal. Herein, we first review the recent progressions in the research of the immune checkpoint molecules and the application of their blocking antibodies in cancer treatment, and then discuss the cardiac toxicity induced by the therapy and the strategy to monitor, manage this adverse event when it occurs.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.