• Anesthesia and analgesia · Oct 2008

    Noble gas binding to human serum albumin using docking simulation: nonimmobilizers and anesthetics bind to different sites.

    • Tomoyoshi Seto, Hideto Isogai, Masayuki Ozaki, and Shuichi Nosaka.
    • Department of Anesthesiology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan. tseto@belle.shiga-med.ac.jp
    • Anesth. Analg. 2008 Oct 1; 107 (4): 1223-8.

    BackgroundNonimmobilizers are structurally similar to anesthetics, but do not produce anesthesia at clinically relevant concentrations. Xenon, krypton, and argon are anesthetics, whereas neon and helium are nonimmobilizers. The structures of noble gases with anesthetics or nonimmobilizers are similar and their interactions are simple. Whether the binding site of anesthetics differs from that of nonimmobilizers has long been a question in molecular anesthesiology.MethodsWe investigated the binding sites and energies of anesthetic and nonimmobilizer noble gases in human serum albumin (HSA) because the 3D structure of HSA is well known and it has an anesthetic binding site. The computational docking simulation we used searches for binding sites and calculates the binding energy for small molecules and a template molecule.ResultsXenon, krypton, and argon were found to bind to the enflurane binding site of HSA, whereas neon and helium were found to bind to sites different from the xenon binding site. Rare gas anesthetic binding was dominated by van der Waals energy, while nonimmobilizer binding was dominated by solvent-effect energy. Binding site preference was determined by the ratios of local binding energy (van der Waals energy) and nonspecific binding energy (solvent-effect energy) to the total binding energy. van der Waals energy dominance is necessary for anesthetic binding.ConclusionsThis analysis of binding energy components provides a rationale for the binding site difference of anesthetics and nonimmobilizers, reveals the differences between the binding interactions of anesthetics and nonimmobilizers, may explain pharmacological differences between anesthetics and nonimmobilizers, and provide an understanding of anesthetic action at the atomic level.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.