• Spine · Nov 2008

    Kinematic analysis of the relationship between sagittal alignment and disc degeneration in the cervical spine.

    • Masashi Miyazaki, Henry J Hymanson, Yuichiro Morishita, Wubing He, Haihong Zhang, Guizhong Wu, Min Ho Kong, Hiroshi Tsumura, and Jeffrey C Wang.
    • Department of Orthopaedic Surgery, Oita University, Oita, Japan.
    • Spine. 2008 Nov 1; 33 (23): E870-6.

    Study DesignRetrospective analysis using kinetic magnetic resonance images (MRIs).ObjectiveTo investigate the relationship of changes in the sagittal alignment of the cervical spine on the kinematics of the functional motion unit and disc degeneration.Summary Of Background DataNormal lordotic alignment is one of the most important factors contributing to effective motion and function of the cervical spine. Loss of normal lordotic alignment may induce pathologic changes in the kinematics and accelerate degeneration of the functional motion unit. However, the relationship of altered alignment on kinematics and degeneration has not been evaluated.MethodsKinetic MRIs in flexion, neutral, and extension were performed. Study participants were classified into 5 groups based on the C1-C7 Cobb angle of sagittal alignment--Group A: Kyphosis (n = 19), Group B: Straight (n = 29), Group C: Hypolordosis (n = 38), Group D: Normal (n = 63), and Group E: Hyperlordosis (n = 52).Intervertebral disc degeneration was graded (Grades 1-5), and the kinematics of the functional spinal unit were obtained.ResultsWhen the alignment shifted from normal to less lordotic, the translational motion and angular variation tended to decrease at all levels. The contribution of the C1-C2, C2-C3, and C3-C4 levels to total angular mobility tended to be higher in Group C than Group D. However, the contribution of the C4-C5, C5-C6, and C6-C7 levels tended to be lower in Group C than in Group D. The grade of disc degeneration associated with loss of lordosis tended to be higher than that associated with normal alignment at the C2-C3 and C3-C4 levels.ConclusionThe present study demonstrated that the changes in sagittal alignment of the cervical spine affect the kinematics. Consequently, it may cause changes in the segment subjected to maximum load for overall motion and accelerate its degeneration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…