-
- Yan Zhang, Yaolei Zhang, Wei Li, Peijian Wang, Rui Gu, Yaxing Feng, Shujie Wei, Ke Peng, Yunrong Zhang, Linan Su, Qiang Wang, Li De Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China., Dachun Yang, Wing Tak Wong, Yongjian Yang, and Shuangtao Ma.
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China.
- J Am Heart Assoc. 2017 Oct 12; 6 (10).
BackgroundIntracoronary stent restenosis, characterized by excessive smooth muscle cell (SMC) proliferation and myointimal hyperplasia, remains a clinical challenge. Mitochondrial membrane potential has been linked to the proliferative rate of SMCs. This study aimed to screen a critical gene regulating mitochondrial potential and to confirm its effects on myointimal formation in preclinical animal models.Methods And ResultsWe performed transcriptome screening for genes differentially expressed in ligated versus unligated mouse carotid arteries. We observed that uncoupling protein 2 gene (Ucp2) mRNA, encoding UCP2, was transiently upregulated during the first 3 days after ligation and then significantly downregulated from day 7 through day 21, during which time neointima formed remarkably. The UCP2 protein level also declined after day 7 of ligation. In ligated carotid arteries, Ucp2-/- mice, compared with wild-type littermates, exhibited accelerated myointimal formation, which was associated with increased superoxide production and can be attenuated by treatment with antioxidant 4-hydroxy-2,2,6,6-tetramethyl-piperidinoxyl (TEMPOL). Knockdown of UCP2 enhanced human aortic SMC migration and proliferation that can also be attenuated by TEMPOL, whereas UCP2 overexpression inhibited SMC migration and proliferation, along with decreased activity of nuclear factor-κB. Moreover, nuclear factor-κB inhibitor attenuated UCP2 knockdown-enhanced SMC proliferation. Adenovirus-mediated overexpression of UCP2 inhibited myointimal formation in balloon-injured carotid arteries of rats and rabbits and in-stent stenosis of porcine coronary arteries. Moreover, UCP2 overexpression also suppressed neointimal hyperplasia in cultured human saphenous vein ex vivo.ConclusionsUCP2 inhibits myointimal hyperplasia after vascular injury, probably through suppressing nuclear factor-κB-dependent SMC proliferation and migration, rendering UCP2 a potential therapeutic target against restenosis.© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.