• Vaccine · Jan 2017

    Development of bioluminescence imaging of respiratory syncytial virus (RSV) in virus-infected live mice and its use for evaluation of therapeutics and vaccines.

    • Sandra Fuentes, Diego Arenas, Martin M Moore, Hana Golding, and Surender Khurana.
    • Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993, USA.
    • Vaccine. 2017 Jan 23; 35 (4): 694-702.

    AbstractRespiratory Syncytial virus (RSV) is one of the leading causes of pneumonia among infants with no human vaccine or efficient curative treatments. Efforts are underway to develop new RSV vaccines and therapeutics. There is a dire need for animal models for preclinical evaluation and selection of products against RSV. Herein, we developed a whole body bioluminescence imaging to follow replication of RSV A2 virus strain expressing firefly luciferase (RSVA2-line19-FFL) in live BALB/c mice that can be used as an extremely sensitive readout for studying effects of antiviral and vaccines in living mice. Strong bioluminescence signal was detected in the nasal cavity and in the lungs following intranasal infection of mice with RSVA2-line19-FFL. The kinetics of viral replication in lungs quantified by daily live imaging strongly correlated with viral titers measured by ex-vivo plaque assay and by assessing viral RNA by qRT-PCR. Vaccination of mice with a pre-fusion F protein elicited high neutralizing antibody titers conferring strong protective immunity against virus replication in the nasal cavity and lungs. In contrast, post-challenge treatment of mice with the monoclonal antibody Palivizumab two days after infection reduced viral replication in the nasal cavity at day 4, but only modestly reduced virus loads in the lungs by day 5. In contrast to RSV bioluminescence, plaque assay did not detect viral titers in lungs on day 5 in Palivizumab-treated animals. This difference between viral loads measured by the two assays was found to be due to coating of virions with the Palivizumab that blocked infection of target cells in vitro and shows importance of live imaging in evaluation of RSV therapeutics. This recombinant RSV based live imaging animal model is convenient and valuable tool that can be used to study host dissemination of RSV and evaluation of antiviral compounds and vaccines against RSV.Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.