• Reg Anesth Pain Med · Jan 2021

    SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats.

    • Chenghua Zhou, Yufeng Zhang, Xiaowei Jiao, Guizhi Wang, Ruiyao Wang, and Yuqing Wu.
    • Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
    • Reg Anesth Pain Med. 2021 Jan 1; 46 (1): 49-56.

    BackgroundThe underlying mechanisms of neuropathic pain remain unclear. This work aimed to investigate the role of Sirtuin3 (SIRT3), an nicotinamide adenosine dinucleotide+-dependent histone deacetylase, in the development of neuropathic pain induced by type 2 diabetes mellitus (T2DM) and to explore the associated mechanisms.MethodsDiabetic neuropathic pain (DNP) in rats was induced by high-fat diet/low-dose streptozotocin. The pain behaviors were examined using the von Frey and Hargreaves tests. The levels of SIRT3, manganese superoxide dismutase (MnSOD) and catalase (CAT) were determined using Western blot and RT-qPCR. The acetylation, phosphorylation and ubiquitination of forkhead box class O3a (FoxO3a) were analyzed by immunoprecipitation and Western blot.ResultsSIRT3 expression and activity were significantly reduced in the spinal dorsal horn of DNP model rats. Overexpression of spinal SIRT3 reversed the pain hypersensitivity in the DNP model rats, but knockdown of spinal SIRT3 mimicked the pain effect, eliciting pain hypersensitivity in normal rats. Moreover, overexpression of spinal SIRT3 in DNP model rats increased the FoxO3a level and upregulated the antioxidant genes MnSOD and CAT by deacetylating FoxO3a and inhibiting FoxO3a phosphorylation and ubiquitination. Knockdown of spinal SIRT3 in normal rats decreased the FoxO3a level and downregulated MnSOD and CAT by inhibiting the deacetylation of FoxO3a and further increasing FoxO3a phosphorylation and ubiquitination.ConclusionsThese results suggest that, by deacetylating FoxO3a and further reducing its phosphorylation, ubiquitination and degradation in the spinal dorsal horn, SIRT3 stabilizes FoxO3a protein and inhibits oxidative stress, resulting in pain alleviation in T2DM model rats.© American Society of Regional Anesthesia & Pain Medicine 2021. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.