• IEEE Trans Ultrason Ferroelectr Freq Control · Nov 2002

    Development and characterization of a vitreous mimicking material for radiation force imaging.

    • Laura A Negron, Francesco Viola, Eric P Black, Cynthia A Toth, and William F Walker.
    • Minrad, Inc., Buffalo, NY, USA.
    • IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Nov 1; 49 (11): 1543-51.

    AbstractIn many medical ultrasound applications tissue-mimicking phantoms are of fundamental importance for the performance of controlled experiments. Traditionally, such phantoms have been constructed using gelatin and agar gels. Although the use of these materials has become standard, few alternative materials have not been fully explored. In this paper, we present a protocol developed in our laboratory that reliably produces very soft, acrylamide-based phantoms that can mimic both acoustical and mechanical characteristics of the vitreous body of the eye. Following the described protocol, a series of phantoms were constructed ranging in acrylamide concentration from 1.60% to 1.70%. Measurements across the series yielded attenuation coefficients of 0.067-0.140 dB/cm/MHz, depending on acrylamide concentration. Speed of sound ranged between 1499 and 1510 m/s, also depending on acrylamide concentration. Published values for the vitreous gel indicate an attenuation of 0.10 dB/cm/MHz and a speed of sound of 1510 m/s, making our phantoms an excellent analog of this tissue. One application of these acrylamide phantoms is to test the efficacy of the Kinetic Acoustic Vitreoretinal Examination (KAVE), a tool developed in our laboratory with the potential to aid in the diagnosis of vitreoretinal disorders. KAVE utilizes acoustic radiation force to generate small, localized displacements within the vitreous-mimicking gel. These localized displacements are quantified to yield maximum displacement, relative elasticity, and relative viscosity images. We present KAVE images of a set of four phantoms with different gel concentrations. Although B-mode and relative viscosity images exhibit no significant differences, maximum displacement, and relative elasticity images clearly differentiate gels of different concentrations. Maximum displacements ranged between 30 and 5 microns, depending on acrylamide concentration. The results presented in this paper show that soft gel phantoms can be produced in a range of elasticities not previously reported, and that these phantoms are useful for testing ultrasound instruments designed for evaluation of the vitreous gel. Furthermore, the use of acrylamide-based gels may also offer a valuable and attractive alternative for many other ultrasound applications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…