-
- Joon-Myoung Kwon, Kyung-Hee Kim, Zeynettin Akkus, Ki-Hyun Jeon, Jinsik Park, and Byung-Hee Oh.
- Department of Emergency Medicine, Mediplex Sejong Hospital, Incheon, Republic of Korea; Artificial Intelligence and Big Data Center, Sejong Medical Research Center, Bucheon, Republic of Korea.
- J Electrocardiol. 2020 Mar 1; 59: 151-157.
BackgroundScreening and early diagnosis of mitral regurgitation (MR) are crucial for preventing irreversible progression of MR. In this study, we developed and validated an artificial intelligence (AI) algorithm for detecting MR using electrocardiography (ECG).MethodsThis retrospective cohort study included data from two hospital. An AI algorithm was trained using 56,670 ECGs from 24,202 patients. Internal validation of the algorithm was performed with 3174 ECGs of 3174 patients from one hospital, while external validation was performed with 10,865 ECGs of 10,865 patients from another hospital. The endpoint was the diagnosis of significant MR, moderate to severe, confirmed by echocardiography. We used 500 Hz ECG raw data as predictive variables. Additionally, we showed regions of ECG that have the most significant impact on the decision-making of the AI algorithm using a sensitivity map.ResultsDuring the internal and external validation, the area under the receiver operating characteristic curve of the AI algorithm using a 12-lead ECG for detecting MR was 0.816 and 0.877, respectively, while that using a single-lead ECG was 0.758 and 0.850, respectively. In the 3157 non-MR individuals, those patients that the AI defined as high risk had a significantly higher chance of development of MR than the low risk group (13.9% vs. 2.6%, p < 0.001) during the follow-up period. The sensitivity map showed the AI algorithm focused on the P-wave and T-wave for MR patients and QRS complex for non-MR patients.ConclusionsThe proposed AI algorithm demonstrated promising results for MR detecting using 12-lead and single-lead ECGs.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.