• J. Heart Lung Transplant. · Aug 2020

    Multicenter Study

    Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography.

    • Joon-Myoung Kwon, Kyung-Hee Kim, Jose Medina-Inojosa, Ki-Hyun Jeon, Jinsik Park, and Byung-Hee Oh.
    • Department of Emergency Medicine, Mediplex Sejong Hospital, Incheon, Korea; Artificial Intelligence and Big Data Center, Sejong Medical Research Center, Bucheon, Korea.
    • J. Heart Lung Transplant. 2020 Aug 1; 39 (8): 805-814.

    BackgroundScreening and early diagnosis of pulmonary hypertension (PH) are critical for managing progression and preventing associated mortality; however, there are no tools for this purpose. We developed and validated an artificial intelligence (AI) algorithm for predicting PH using electrocardiography (ECG).MethodsThis historical cohort study included data from consecutive patients from 2 hospitals. The patients in one hospital were divided into derivation (56,670 ECGs from 24,202 patients) and internal validation (3,174 ECGs from 3,174 patients) datasets, whereas the patients in the other hospital were included in only an external validation (10,865 ECGs from 10,865 patients) dataset. An AI algorithm based on an ensemble neural network was developed using 12-lead ECG signal and demographic information from the derivation dataset. The end-point was the diagnosis of PH. In addition, the interpretable AI algorithm identified which region had the most significant effect on decision making using a sensitivity map.ResultsDuring the internal and external validation, the area under the receiver operating characteristic curve of the AI algorithm for detecting PH was 0.859 and 0.902, respectively. In the 2,939 individuals without PH at initial echocardiography, those patients that the AI defined as having a higher risk had a significantly higher chance of developing PH than those in the low-risk group (31.5% vs 5.9%, p < 0.001) during the follow-up period. The sensitivity map showed that the AI algorithm focused on the S-wave, P-wave, and T-wave for each patient by QRS complex characteristics.ConclusionsThe AI algorithm demonstrated high accuracy for PH prediction using 12-lead and single-lead ECGs.Copyright © 2020 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…